SPX: Collaborative Research: Dependence Programming and Optimization of Scalable Irregular Numerical Applications
SPX:协作研究:可扩展不规则数值应用的依赖编程和优化
基本信息
- 批准号:1725428
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Dynamic and irregular applications, such as in the Multiresolution Adaptive Numerical Environment for Scientific Simulation framework, are notoriously hard to implement efficiently, especially on emerging complex and heterogeneous high-performance computing platforms. This is further compounded by the lack of suitable programming models capable of expressing these kinds of applications, while at the same time allowing the tools to efficiently map the applications on a variety of hardware. The intellectual merits of this project are in advancing the state of the art in dependence-based programming models, compiler technologies and runtime techniques that address these issues. The project's broader significance and importance are in laying down the intellectual foundations for the composition and optimization of irregular scalable algorithms, focusing on challenging and highly-significant spatial-tree algorithms. This project enables design and implementation of high-performance, portable irregular applications, as well as training of the future employees of companies and government who work in these domains.This project redefines the prevailing abstractions by unifying and extending the Concurrent Collections (CnC) dependence-based programming model with novel compiler and runtime techniques, and applying these to a very important class of dynamic, irregular numerical computations such as the ones found in the above simulation framework. Innovations in the programming model allow the programmers to separate the specification of the algorithm from a specification of how to efficiently map the application on a variety of different platforms with a variety of different tuning goals. Compiler innovations enable previously elusive optimizations of irregular applications, while runtime techniques enable efficient execution on modern, heterogeneous and distributed machines.
动态和不规则的应用程序,如多分辨率自适应数值环境科学仿真框架,是众所周知的难以有效地实现,特别是在新兴的复杂和异构的高性能计算平台。由于缺乏能够表达这些类型的应用程序的合适的编程模型,同时允许工具在各种硬件上有效地映射应用程序,这进一步加剧了问题。这个项目的智力价值在于推进了基于依赖的编程模型、编译器技术和解决这些问题的运行时技术的最新发展。 该项目更广泛的意义和重要性在于为不规则可扩展算法的组成和优化奠定了知识基础,重点是具有挑战性和高度重要性的空间树算法。 该项目使设计和实现高性能,可移植的非常规应用程序,以及培训未来的员工的公司和政府谁在这些领域的工作。该项目重新定义了流行的抽象统一和扩展的并发集合(CnC)依赖为基础的编程模型与新的编译器和运行时技术,并将这些应用到一个非常重要的类的动态,不规则的数值计算,例如在上述模拟框架中发现的数值计算。编程模型中的创新允许程序员将算法的规范与如何在具有各种不同调优目标的各种不同平台上有效地映射应用程序的规范分开。更快的创新使以前难以实现的不规则应用程序的优化成为可能,而运行时技术则使现代、异构和分布式机器上的高效执行成为可能。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deriving parametric multi-way recursive divide-and-conquer dynamic programming algorithms using polyhedral compilers
使用多面体编译器导出参数多路递归分治动态规划算法
- DOI:10.1145/3368826.3377916
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Javanmard, Mohammad Mahdi;Ahmad, Zafar;Kong, Martin;Pouchet, Louis-Noël;Chowdhury, Rezaul;Harrison, Robert
- 通讯作者:Harrison, Robert
Efficient Execution of Dynamic Programming Algorithms on Apache Spark
- DOI:10.1109/cluster49012.2020.00044
- 发表时间:2020-09
- 期刊:
- 影响因子:0
- 作者:M. Javanmard;Zafar Ahmad;J. Zola;L. Pouchet;R. Chowdhury;R. Harrison
- 通讯作者:M. Javanmard;Zafar Ahmad;J. Zola;L. Pouchet;R. Chowdhury;R. Harrison
Understanding Recursive Divide-and-Conquer Dynamic Programs in Fork-Join and Data-Flow Execution Models
了解 Fork-Join 和数据流执行模型中的递归分治动态程序
- DOI:10.1109/ipdpsw52791.2021.00069
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Nookala, Poornima;Ahmad, Zafar;Javanmard, Mohammad Mahdi;Kong, Martin;Chowdhury, Rezaul;Harrison, Robert
- 通讯作者:Harrison, Robert
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Harrison其他文献
LEVOSIMENDAN REDUCES MORTALITY IN PATIENTS WITH REDUCED EJECTION FRACTION UNDERGOING CARDIAC SURGERY: A META-ANALYSIS OF RANDOMIZED CLINICAL TRIALS
- DOI:
10.1016/s0735-1097(12)60960-7 - 发表时间:
2012-03-27 - 期刊:
- 影响因子:
- 作者:
Robert Harrison;Victor Hasselblad;Ricardo Levin;Rajendra Mehta;Robert Harrington;John Alexander - 通讯作者:
John Alexander
Detection of pion-induced radioactivity by autoradiography and positron emission tomography.
通过放射自显影和正电子发射断层扫描检测π介子诱发的放射性。
- DOI:
10.1118/1.596426 - 发表时间:
1989 - 期刊:
- 影响因子:3.8
- 作者:
Hiroki Shirato;Robert Harrison;R. O. Kornelsen;Gabriel K. Y. Lam;Cristopher C. Gaffney;George B. Goodman;Ed Grochowski;Brian Pate - 通讯作者:
Brian Pate
Cancer Risk in the Semiconductor Industry: A Call for Action
半导体行业的癌症风险:呼吁采取行动
- DOI:
10.1179/107735202800338948 - 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
J. Bailar;M. Greenberg;Robert Harrison;J. LaDou;E. Richter;A. Watterson - 通讯作者:
A. Watterson
The in vitro identification of dimethyltryptamine (DMT) in mammalian brain and its characterization as a possible endogenous neuroregulatory agent.
哺乳动物大脑中二甲基色胺 (DMT) 的体外鉴定及其作为可能的内源性神经调节剂的表征。
- DOI:
- 发表时间:
1977 - 期刊:
- 影响因子:0
- 作者:
Samuel T. Christian;Robert Harrison;Elizabeth Quayle;J. Pagel;John A. Monti - 通讯作者:
John A. Monti
Performance On Guideline Directed Medical Therapy Remains Low In A Cluster-randomized Trial: Results From CONNECT-HF
- DOI:
10.1016/j.cardfail.2022.03.114 - 发表时间:
2022-04-01 - 期刊:
- 影响因子:8.200
- 作者:
Bradi Granger;Adam Devore;Lisa Kaltenbach;Gregg Fonarow;Hussein Al-Khalidi;Nancy Albert;Eldrin Lewis;Javed Butler;Ileana Pina;Paul Heidenreich;Larry Allen;Clyde Yancy;Lauren Cooper;Michael Felker;Andrew McRae;David Lanfear;Robert Harrison;Maghee Disch;Dan Ariely;Julie Miller;Adrian Hernandez - 通讯作者:
Adrian Hernandez
Robert Harrison的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Harrison', 18)}}的其他基金
MRI: Acquisition of a computer system for Research and Education – Seawulf
MRI:购买用于研究和教育的计算机系统 – Seawulf
- 批准号:
2215987 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: Production quality Ecosystem for Programming and Executing eXtreme-scale Applications (EPEXA)
合作研究:框架:用于编程和执行超大规模应用程序的生产质量生态系统 (EPEXA)
- 批准号:
1931387 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Category II : Ookami: A high-productivity path to frontiers of scientific discovery enabled by exascale system technologies
第二类:Ookami:通过百亿亿次系统技术实现科学发现前沿的高生产力之路
- 批准号:
1927880 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Cooperative Agreement
NRT-DESE: Interdisciplinary Graduate Training to Understand and Inform Decision Processes Using Advanced Spatial Data Analysis and Visualization
NRT-DESE:使用高级空间数据分析和可视化来理解和指导决策过程的跨学科研究生培训
- 批准号:
1633299 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
MRI: Acquisition of SeaWulf - A Reconfigurable Computer System for Research and Education
MRI:收购 SeaWulf - 用于研究和教育的可重构计算机系统
- 批准号:
1531492 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSI: Task-Based Environment for Scientific Simulation at Extreme Scale (TESSE)
合作研究:SI2-SSI:基于任务的超大规模科学模拟环境 (TESSE)
- 批准号:
1450344 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Novel immuno-proteomic strategies to develop a polyspecific, non-cold chain liquid snake antivenom with unparalleled sub-Saharan African efficacy
新型免疫蛋白质组学策略,用于开发具有无与伦比的撒哈拉以南非洲功效的多特异性、非冷链液体蛇抗蛇毒血清
- 批准号:
MR/L01839X/1 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Research Grant
Scientific Software Innovation Institute for Computational Chemistry and Materials Modeling (S2I2C2M2) Software Summer School
计算化学与材料建模科学软件创新研究院(S2I2C2M2)软件暑期学校
- 批准号:
1450986 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Knowledge Driven Configurable Manufacturing (KDCM)
知识驱动的可配置制造(KDCM)
- 批准号:
EP/K018191/1 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Research Grant
Collaborative Research: A Scientific Software Innovation Institute for Computational Chemistry and Materials Modeling (S2I2C2M2)
合作研究:计算化学和材料建模科学软件创新研究所(S2I2C2M2)
- 批准号:
1341315 - 财政年份:2012
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似海外基金
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
- 批准号:
2408925 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
- 批准号:
2401544 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
- 批准号:
2412182 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Cross-stack Memory Optimizations for Boosting I/O Performance of Deep Learning HPC Applications
SPX:协作研究:用于提升深度学习 HPC 应用程序 I/O 性能的跨堆栈内存优化
- 批准号:
2318628 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
SPX: Collaborative Research: NG4S: A Next-generation Geo-distributed Scalable Stateful Stream Processing System
SPX:合作研究:NG4S:下一代地理分布式可扩展状态流处理系统
- 批准号:
2202859 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
- 批准号:
2333009 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Memory Fabric: Data Management for Large-scale Hybrid Memory Systems
SPX:协作研究:内存结构:大规模混合内存系统的数据管理
- 批准号:
2132049 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
- 批准号:
2113307 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
- 批准号:
1919117 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
- 批准号:
1918987 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant