SPX: Collaborative Research: SANDY: Sparsification-based Approach for Analyzing Network Dynamics

SPX:协作研究:SANDY:基于稀疏化的网络动态分析方法

基本信息

  • 批准号:
    1725585
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

The goal of this three-year project, Sparsification-based Approach for Analyzing Network Dynamics (SANDY), is to develop a suite of scalable parallel algorithms for updating dynamic networks for different problems that can be executed on a wide range of HPC platforms. Dynamic network analysis will enable researchers to study the evolution of complex systems in diverse disciplines, such as bioinformatics, social sciences, and epidemiology. The SANDY project is expected to initiate a new direction of research in developing parallel dynamic network algorithms that will benefit multiple analysis objectives (e.g., motif finding and network alignment) and application domains (e.g., epidemiology, health care). Research findings will be integrated into courses on network analysis, parallel algorithms, and bioinformatics offered at the three collaborating institutions. The PIs will collaborate with high schools to deliver talks on network theory, and encourage women and minority students to pursue IT-related careers. To develop efficient and scalable parallel algorithms, the PIs propose to use an elegant technique, called graph sparsification, that expresses graph algorithms in a reduction-like fashion. The formal steps to parallelization, as guided by the graph sparsification framework, provide a template for creating provably correct parallel algorithms for dynamic networks. The proposed algorithms will address the dual needs of portability and performance optimization. The framework will further provide a mechanism for combining high level (e.g., static and dynamic graph partitioning) and low level (e.g., dataflow algorithms) tuning strategies to ensure high performance and scalability for various parallel architectures by considering such factors as scalability, time, memory, and energy efficiency.
这个为期三年的项目名为基于稀疏化的网络动态分析方法(SANDY),其目标是开发一套可扩展的并行算法,用于更新动态网络,以解决不同的问题,这些问题可以在各种高性能计算平台上执行。动态网络分析将使研究人员能够研究不同学科中复杂系统的演化,如生物信息学、社会科学和流行病学。预计SANDY项目将在开发并行动态网络算法方面开创一个新的研究方向,这将有利于多个分析目标(例如,基序发现和网络对齐)和应用领域(例如,流行病学,卫生保健)。研究成果将整合到三家合作机构提供的网络分析、并行算法和生物信息学课程中。pi将与高中合作开展网络理论讲座,并鼓励女性和少数民族学生从事与it相关的职业。为了开发高效和可扩展的并行算法,pi建议使用一种称为图稀疏化的优雅技术,该技术以类似简化的方式表达图算法。在图稀疏化框架的指导下,并行化的正式步骤提供了一个模板,用于为动态网络创建可证明正确的并行算法。所提出的算法将满足可移植性和性能优化的双重需求。该框架将进一步提供一种机制,结合高级(例如,静态和动态图分区)和低级(例如,数据流算法)调优策略,通过考虑可伸缩性、时间、内存和能效等因素,确保各种并行架构的高性能和可伸缩性。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Single-Source Shortest Path Tree for Big Dynamic Graphs
大动态图的单源最短路径树
  • DOI:
    10.1109/bigdata.2018.8622042
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Riazi, Sara;Srinivasan, Sriram;Das, Sajal K.;Bhowmick, Sanjukta;Norris, Boyana
  • 通讯作者:
    Norris, Boyana
A Shared-Memory Parallel Algorithm for Updating Single-Source Shortest Paths in Large Dynamic Networks
大型动态网络中单源最短路径更新的共享内存并行算法
A Shared-Memory Algorithm for Updating Tree-Based Properties of Large Dynamic Networks
一种用于更新大型动态网络的基于树的属性的共享内存算法
  • DOI:
    10.1109/tbdata.2018.2870136
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    7.2
  • 作者:
    Srinivasan, Sriram;Pollard, Samuel;Das, Sajal K.;Norris, Boyana;Bhowmick, Sanjukta
  • 通讯作者:
    Bhowmick, Sanjukta
A Performance and Recommendation System for Parallel Graph Processing Implementations: Work-In-Progress
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Boyana Norris其他文献

A distributed application server for automatic differentiation
用于自动微分的分布式应用服务器
Adaptive software for scientific computing: co-managing quality-performance-power tradeoffs
用于科学计算的自适应软件:共同管理质量-性能-功耗权衡
Sensitivity analysis and design optimization through automatic differentiation
通过自动微分进行敏感性分析和设计优化
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Hovland;Boyana Norris;M. Strout;S. Bhowmick;J. Utke
  • 通讯作者:
    J. Utke
Automatic Differentiation: Applications, Theory, and Implementations (Lecture Notes in Computational Science and Engineering)
自动微分:应用、理论和实现(计算科学与工程讲义)
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Martin Bücker;G. Corliss;P. Hovland;U. Naumann;Boyana Norris
  • 通讯作者:
    Boyana Norris
Guest Editor Fred Johnson 1 Introduction 32 Doe's Scidac Visualization and Analytics Center for Enabling Technologies – Strategy for Petascale Visual Data Analysis Success 4 Failure Tolerance in Petascale Computers 41 Emerging Visualization Technologies for Ultra-scale Simulations End-to-end Data So
客座编辑 Fred Johnson 1 简介 32 美国能源部 Scidac 可视化和分析中心的支持技术 – 千万亿次可视化数据分析成功的策略 4 千万亿次计算机的容错能力 41 用于超大规模仿真的新兴可视化技术 端到端数据分析
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bianca schroeder;Joan digney;Kwan;Jennifer M. Schopf;A. Chervenak;dan Fraser;david H. Bailey;Robert F. Lucas;P. Hovland;Boyana Norris;Alok Ratan Choudhary;terence Critchlow;J. Mellor;Peter Beckman;Keith D. Cooper;D. Bernholdt
  • 通讯作者:
    D. Bernholdt

Boyana Norris的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Boyana Norris', 18)}}的其他基金

Collaborative Research: Framework Implementation: CSSI: CANDY: Cyberinfrastructure for Accelerating Innovation in Network Dynamics
合作研究:框架实施:CSSI:CANDY:加速网络动态创新的网络基础设施
  • 批准号:
    2104115
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Automated Numerical Solver EnviRonment (ANSER)
SHF:小型:协作研究:自动数值求解器环境 (ANSER)
  • 批准号:
    1717883
  • 财政年份:
    2017
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Lighthouse: A User- Centered Web System for High-Performance Software Development
EAGER:协作研究:Lighthouse:用于高性能软件开发的以用户为中心的 Web 系统
  • 批准号:
    1550202
  • 财政年份:
    2015
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Taxonomy for the Automated Tuning of Matrix Algebra Software
SHF:小型:协作研究:矩阵代数软件自动调整的分类法
  • 批准号:
    0916474
  • 财政年份:
    2009
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant

相似海外基金

SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
  • 批准号:
    2408925
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
  • 批准号:
    2401544
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
  • 批准号:
    2412182
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Cross-stack Memory Optimizations for Boosting I/O Performance of Deep Learning HPC Applications
SPX:协作研究:用于提升深度学习 HPC 应用程序 I/O 性能的跨堆栈内存优化
  • 批准号:
    2318628
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: NG4S: A Next-generation Geo-distributed Scalable Stateful Stream Processing System
SPX:合作研究:NG4S:下一代地理分布式可扩展状态流处理系统
  • 批准号:
    2202859
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
  • 批准号:
    2333009
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Memory Fabric: Data Management for Large-scale Hybrid Memory Systems
SPX:协作研究:内存结构:大规模混合内存系统的数据管理
  • 批准号:
    2132049
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
  • 批准号:
    2113307
  • 财政年份:
    2020
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
  • 批准号:
    1919117
  • 财政年份:
    2019
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
  • 批准号:
    1918987
  • 财政年份:
    2019
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了