SPX: Collaborative Research: Asynchronous, Parallel-Adaptive Solution of Extreme Multiscale Problems in Seismology

SPX:协作研究:地震学中极端多尺度问题的异步、并行自适应解决方案

基本信息

  • 批准号:
    1725555
  • 负责人:
  • 金额:
    $ 17.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

This collaborative project among scientists at the University of Illinois and the University of Tennessee will develop parallel software for efficient earthquake simulations on exascale supercomputers. State-of-the-art systems now resolve seismic response at frequencies up to 1 Hz, but design engineers require resolution up to 10 Hz. Synchronization barriers may limit performance on exascale systems. This project will develop scalable, barrier-free asynchronous simulation tools and space-time adaptive meshing to meet the seismic resolution requirements on exascale platforms. It will develop improved fault-gouge physics models and extend asynchronous hyperbolic solvers to address elliptic (and eventually parabolic) systems. These extensions will enable the first regional, full-cycle seismic simulations, covering fast earthquake events and much slower crustal motion between earthquakes, as well as the use of asynchronous exascale solvers in most PDE-based scientific and engineering applications. The asynchronous solution technology will support more reliable earthquake hazard maps and the design of safer, more economical earthquake-resistant buildings and infrastructure. In view of its broad applicability, the unprecedented simulation power afforded by this research could trigger numerous breakthroughs in the commercial and defense sectors. Four graduate research assistants will receive cross-disciplinary training, and undergraduate students will participate through the National Center for Supercomputing Application?s SPIN (Students Pushing INnovation) program.This collaborative project among scientists at the University of Illinois and the University of Tennessee will develop parallel software for efficient earthquake simulations on exascale supercomputers. State-of-the-art systems now resolve seismic response at frequencies up to 1 Hz, but design engineers require resolution up to 10 Hz. Synchronization barriers and load balancing across subdomains may limit performance on exascale systems. This project will replace the standard bulk synchronous parallel model and Domain Decomposition Method (DDM) with scalable, barrier-free asynchronous solvers and space-time adaptive meshing without DDM to meet the seismic resolution requirements on exascale platforms. It will develop Shear Transition Zone models for fault-gouge physics and use pseudo-time methods to extend asynchronous hyperbolic solvers to address elliptic (and eventually parabolic) systems. These extensions will enable the first regional, full-cycle seismic simulations, covering fast earthquake events and much slower crustal motion between earthquakes, as well as the use of asynchronous exascale solvers in most PDE-based scientific and engineering applications. The asynchronous solution technology will support more reliable earthquake hazard maps and the design of safer, more economical earthquake-resistant buildings and infrastructure. In view of its broad applicability, the unprecedented simulation power afforded by this research could trigger numerous breakthroughs in the commercial and defense sectors. Four graduate research assistants will receive cross-disciplinary training, and undergraduate students will participate through the National Center for Supercomputing Application?s SPIN (Students Pushing INnovation) program
伊利诺伊大学和田纳西大学的科学家之间的这一合作项目将开发并行软件,用于在艾级超级计算机上进行有效的地震模拟。目前,最先进的系统可以在高达1 Hz的频率下解析地震响应,但设计工程师需要高达10 Hz的分辨率。同步障碍可能会限制exascale系统的性能。该项目将开发可扩展的、无障碍的异步模拟工具和时空自适应网格,以满足艾级平台上的地震分辨率要求。它将开发改进的断层泥物理模型,并扩展异步双曲线求解器,以解决椭圆(最终抛物线)系统。这些扩展将使第一个区域,全周期地震模拟,涵盖快速地震事件和地震之间慢得多的地壳运动,以及在大多数基于PDE的科学和工程应用中使用异步艾级解算器。异步解决方案技术将支持更可靠的地震灾害地图,以及更安全、更经济的抗震建筑和基础设施的设计。鉴于其广泛的适用性,这项研究所提供的前所未有的模拟能力可能会在商业和国防领域引发许多突破。4名研究生研究助理将接受跨学科培训,本科生将通过国家超级计算应用中心参与。这是伊利诺斯大学和田纳西大学科学家的合作项目,将开发并行软件,用于在百万亿次超级计算机上进行有效的地震模拟。目前,最先进的系统可以在高达1 Hz的频率下解析地震响应,但设计工程师需要高达10 Hz的分辨率。跨子域的同步障碍和负载平衡可能会限制exascale系统的性能。该项目将用可扩展的、无障碍的异步求解器和无DDM的时空自适应网格化来取代标准的块同步并行模型和区域分解方法(DDM),以满足艾尺度平台上的地震分辨率要求。它将为断层泥物理学开发剪切过渡带模型,并使用伪时间方法来扩展异步双曲线求解器以解决椭圆(最终是抛物)系统。这些扩展将使第一个区域,全周期地震模拟,涵盖快速地震事件和地震之间慢得多的地壳运动,以及在大多数基于PDE的科学和工程应用中使用异步艾级解算器。异步解决方案技术将支持更可靠的地震灾害地图,以及更安全、更经济的抗震建筑和基础设施的设计。鉴于其广泛的适用性,这项研究所提供的前所未有的模拟能力可能会在商业和国防领域引发许多突破。4名研究生研究助理将接受跨学科培训,本科生将通过国家超级计算应用中心参与。SPIN(Students Pushing Incidence)

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Stochastic Bulk Damage Model Based on Mohr-Coulomb Failure Criterion for Dynamic Rock Fracture
  • DOI:
    10.3390/app9050830
  • 发表时间:
    2019-03-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Bahmani, Bahador;Abedi, Reza;Clarke, Philip L.
  • 通讯作者:
    Clarke, Philip L.
Spacetime simulation of dynamic fracture with crack closure and frictional sliding
具有裂纹闭合和摩擦滑动的动态断裂时空模拟
Random Field Realization and Fracture Simulation of Rocks With Angular Bias for Fracture Strength
  • DOI:
  • 发表时间:
    2018-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Garrard;R. Abedi;P. Clarke
  • 通讯作者:
    J. Garrard;R. Abedi;P. Clarke
Comparison of Interfacial and Continuum Models for Dynamic Fragmentation Analysis
Modeling of Rock Inhomogeneity and Anisotropy by Explicit and Implicit Representation of Microcracks
  • DOI:
  • 发表时间:
    2018-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Abedi;P. Clarke
  • 通讯作者:
    R. Abedi;P. Clarke
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Reza Abedi其他文献

Geometric partitioning schemes to reduce modeling bias in statistical volume elements smaller than the scale of isotropic and homogeneous size limits
  • DOI:
    10.1016/j.cma.2022.114772
  • 发表时间:
    2022-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Katherine Acton;Justin Garrard;Reza Abedi
  • 通讯作者:
    Reza Abedi
FAMILY ENTREPRENEURIAL BUSINESSES AND NEW VENTURES: FORMATION, CHALLENGES, BEHAVIOR, RELATIONSHIP.
家族企业和新企业:形成、挑战、行为、关系。
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mohsen Babaei;Reza Abedi;M. Safizadeh
  • 通讯作者:
    M. Safizadeh
Rate dependency and fragmentation response of phase field models with micro inertia and micro viscosity terms
具有微观惯性和微观粘性项的相场模型的速率依赖性和破碎响应
Dynamic homogenization of random elastodynamic metamaterials using space–time Fourier transform
基于时空傅里叶变换的随机弹性动力学超材料的动态均匀化
Integrating angular and domain decomposition with space-angle discontinuous Galerkin methods in 2D radiative transfer
  • DOI:
    10.1016/j.jqsrt.2024.109208
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Hang Wang;Md Ershadul Haque;Reza Abedi;Saba Mudaliar
  • 通讯作者:
    Saba Mudaliar

Reza Abedi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Reza Abedi', 18)}}的其他基金

Characterization and Simulation of Dispersive Elastodynamic Media in Time Domain
时域色散弹性动力介质的表征和仿真
  • 批准号:
    2039472
  • 财政年份:
    2022
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Standard Grant
A Stochastic and Computational Approach for Fracture Modeling of Quasi-Brittle Materials
准脆性材料断裂建模的随机计算方法
  • 批准号:
    1538332
  • 财政年份:
    2015
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Standard Grant

相似海外基金

SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
  • 批准号:
    2408925
  • 财政年份:
    2023
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
  • 批准号:
    2401544
  • 财政年份:
    2023
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
  • 批准号:
    2412182
  • 财政年份:
    2023
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Cross-stack Memory Optimizations for Boosting I/O Performance of Deep Learning HPC Applications
SPX:协作研究:用于提升深度学习 HPC 应用程序 I/O 性能的跨堆栈内存优化
  • 批准号:
    2318628
  • 财政年份:
    2022
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: NG4S: A Next-generation Geo-distributed Scalable Stateful Stream Processing System
SPX:合作研究:NG4S:下一代地理分布式可扩展状态流处理系统
  • 批准号:
    2202859
  • 财政年份:
    2022
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
  • 批准号:
    2333009
  • 财政年份:
    2022
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Memory Fabric: Data Management for Large-scale Hybrid Memory Systems
SPX:协作研究:内存结构:大规模混合内存系统的数据管理
  • 批准号:
    2132049
  • 财政年份:
    2021
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
  • 批准号:
    2113307
  • 财政年份:
    2020
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
  • 批准号:
    1919117
  • 财政年份:
    2019
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
  • 批准号:
    1918987
  • 财政年份:
    2019
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了