SPX: Collaborative Research: Eat your Wheaties: Multi-Grain Compilers for Parallel Builds at Every Scale

SPX:协作研究:吃你的小麦:用于各种规模并行构建的多粒度编译器

基本信息

  • 批准号:
    1725647
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-15 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Title: SPX: Collaborative Research: Multi-Grain Compilers for Parallel Builds at Every ScaleModern software development practices at companies such as Google and Facebook have led to compilation -- the process of transforming source programs into executable programs -- becoming a significant, time-consuming, resource-intensive process. Unfortunately, even state of the art compilers and build systems do not do a good job of exploiting emerging, high-performance, highly-parallel hardware, so software development is hampered by the still-slow process of compilation. This project aims to develop new techniques to speed up the process of compilation. The intellectual merits are designing new compiler internals, algorithms, and schedulers to enable compilers to take advantage of modern hardware capabilities. The project's broader significance and importance are that the process of compilation undergirds virtually every aspect of modern software, and hence modern life: speeding up compilation enables any type of software to be developed more quickly, providing new features to users and more quickly squashing potentially catastrophic bugs.The project revolves around three main thrusts. First, the PIs are developing new representations for compiler internals that better fit the memory hierarchy of modern machines, eschewing pointer-based representations for dense representations. We are designing techniques to allow programmers to write their compiler passes at a high level while automatically converting them to use the dense representation. Second, the PIs are designing new algorithms to optimize compiler passes. These are transformations of internal compiler algorithms to promote locality (by combining passes that operate on similar portions of a program) and to enhance parallelism (by eliminating unnecessary synchronization between passes). Finally, the PIs are creating new scheduling techniques to allow the new highly-parallel compiler algorithms to be effectively mapped to the parallel and distributed hardware on which modern build systems execute.
在b谷歌和Facebook等公司的现代软件开发实践中,编译(将源程序转换为可执行程序的过程)已经成为一个重要的、耗时的、资源密集型的过程。不幸的是,即使是最先进的编译器和构建系统也不能很好地利用新兴的、高性能的、高度并行的硬件,因此软件开发受到仍然缓慢的编译过程的阻碍。这个项目旨在开发新技术来加快编译过程。智力上的优点是设计新的编译器内部、算法和调度器,使编译器能够利用现代硬件功能。该项目更广泛的意义和重要性在于,编译过程实际上是现代软件和现代生活的每一个方面的基础:加速编译使任何类型的软件都能更快地开发出来,为用户提供新的特性,并更快地消除潜在的灾难性错误。该项目围绕三个主要目标展开。首先,pi正在为编译器内部开发新的表示,以更好地适应现代机器的内存层次结构,避免基于指针的表示,采用密集的表示。我们正在设计一些技术,允许程序员在高层次上编写编译器传递,同时自动将它们转换为使用密集表示。其次,pi正在设计新的算法来优化编译程序。这些是内部编译器算法的转换,以提高局部性(通过组合在程序的相似部分上操作的传递)和增强并行性(通过消除传递之间不必要的同步)。最后,pi正在创建新的调度技术,以允许新的高度并行编译器算法有效地映射到执行现代构建系统的并行和分布式硬件上。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Priority Scheduling for Interactive Applications
交互式应用程序的优先级调度
Tight Bounds for Parallel Paging and Green Paging
  • DOI:
    10.1137/1.9781611976465.180
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kunal Agrawal;M. A. Bender;Rathish Das;William Kuszmaul;E. Peserico;Michele Scquizzato
  • 通讯作者:
    Kunal Agrawal;M. A. Bender;Rathish Das;William Kuszmaul;E. Peserico;Michele Scquizzato
An Efficient Scheduler for Task-Parallel Interactive Applications
How to Manage High-Bandwidth Memory Automatically
如何自动管理高带宽内存
Provably Good Randomized Strategies for Data Placement in Distributed Key-Value Stores
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kunal Agrawal其他文献

Brief Announcement: Green Paging and Parallel Paging
简短公告:绿色分页和并行分页
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kunal Agrawal;William Kuszmaul;Michele Scquizzato
  • 通讯作者:
    Michele Scquizzato
Intractability Issues in Mixed-Criticality Scheduling
混合关键调度中的棘手问题
  • DOI:
    10.4230/lipics.ecrts.2018.11
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Kunal Agrawal;Sanjoy Baruah
  • 通讯作者:
    Sanjoy Baruah
The Safe and Effective Use of Low-Assurance Predictions in Safety-Critical Systems
在安全关键系统中安全有效地使用低保证率预测
Distributed Load Balancing in the Face of Reappearance Dependencies
面对再现依赖的分布式负载均衡
Analysis of classic algorithms on GPUs
GPU上经典算法分析

Kunal Agrawal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kunal Agrawal', 18)}}的其他基金

Collaborative Research: PPoSS: Large: A Full-Stack Architecture for Sparse Computation
协作研究:PPoSS:大型:稀疏计算的全栈架构
  • 批准号:
    2216971
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Adventures in Flatland: Algorithms for Modern Memories
合作研究:AF:媒介:平地历险记:现代记忆算法
  • 批准号:
    2106699
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Responsive Parallelism for Interactive Applications: Theory and Practice
协作研究:SHF:媒介:交互式应用程序的响应式并行性:理论与实践
  • 批准号:
    2107280
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
XPS: FULL: FP: Collaborative Research: Taming parallelism: optimally exploiting high-throughput parallel architectures
XPS:完整:FP:协作研究:驯服并行性:最佳地利用高吞吐量并行架构
  • 批准号:
    1439062
  • 财政年份:
    2014
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
XPS: FP: Real-Time Scheduling of Parallel Tasks
XPS:FP:并行任务的实时调度
  • 批准号:
    1337218
  • 财政年份:
    2013
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAREER: Provably Good Concurrency Platforms for Streaming Applications
职业:经过验证的流应用程序良好并发平台
  • 批准号:
    1150036
  • 财政年份:
    2012
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
AF: SMALL: Collaborative Research: Data Structures for Parallel Algorithms
AF:小:协作研究:并行算法的数据结构
  • 批准号:
    1218017
  • 财政年份:
    2012
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似海外基金

SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
  • 批准号:
    2408925
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
  • 批准号:
    2401544
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
  • 批准号:
    2412182
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Cross-stack Memory Optimizations for Boosting I/O Performance of Deep Learning HPC Applications
SPX:协作研究:用于提升深度学习 HPC 应用程序 I/O 性能的跨堆栈内存优化
  • 批准号:
    2318628
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: NG4S: A Next-generation Geo-distributed Scalable Stateful Stream Processing System
SPX:合作研究:NG4S:下一代地理分布式可扩展状态流处理系统
  • 批准号:
    2202859
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
  • 批准号:
    2333009
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Memory Fabric: Data Management for Large-scale Hybrid Memory Systems
SPX:协作研究:内存结构:大规模混合内存系统的数据管理
  • 批准号:
    2132049
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
  • 批准号:
    2113307
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
  • 批准号:
    1919117
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
  • 批准号:
    1918987
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了