SPX: Collaborative Research: Harnessing the Power of High-Bandwidth Memory via Provably Efficient Parallel Algorithms
SPX:协作研究:通过可证明高效的并行算法利用高带宽内存的力量
基本信息
- 批准号:1725661
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2018-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
An important bottleneck for many parallel scientific applications is memory performance. Recently, vendors have introduced a new memory called high-bandwidth memory (HBM) as an approach to alleviate this bottleneck. This project will develop an algorithmic foundation for using HBM. The project has the potential for a broad economic, technological, and scientific impact, since industry has an investment in this technology and many of the nation's strategic codes are being run on HBM-capable machines. The PIs will integrate research with education at the graduate and undergraduate levels by training PhD, MS, and honors program BS students in cross-cutting issues encompassing algorithm design, high-performance software, and processor architecture. The new approach offered by vendors is to bond memory (HBM) directly to the processor chip, which allows for more connections, enabling higher bandwidth. Although the size of the new memory is larger than modern on-chip caches, physical constraints limit the capacity of the memory to be significantly smaller than DRAM. HBM does not cleanly fit in the standard memory hierarchy. This project will develop a foundational understanding of how to algorithmically design codes for HBM enhanced architectures. Overcoming these intellectual challenges to achieve multi-core scalability using HBM requires new algorithms, models, and abstractions, spearheaded by this collaboration between researchers who study hardware issues, high performance computing challenges, and theoretical modeling and analysis.
许多并行科学应用的一个重要瓶颈是内存性能。最近,供应商已经推出了一种称为高带宽内存(HBM)的新内存来缓解这一瓶颈。该项目将为使用HBM开发算法基础。该项目具有广泛的经济、技术和科学影响的潜力,因为工业界对这项技术进行了投资,而且许多国家的战略代码都在具有hbm功能的机器上运行。pi将通过培训博士、硕士和荣誉项目的学生,在包括算法设计、高性能软件和处理器架构在内的交叉问题上,将研究与研究生和本科水平的教育结合起来。供应商提供的新方法是将内存(HBM)直接绑定到处理器芯片上,这允许更多的连接,从而实现更高的带宽。虽然新存储器的大小比现代片上缓存大,但物理限制限制了存储器的容量明显小于DRAM。HBM并不完全适合标准内存层次结构。该项目将培养对如何为HBM增强型架构进行算法设计代码的基本理解。克服这些智力上的挑战,使用HBM实现多核可伸缩性需要新的算法、模型和抽象,由研究硬件问题、高性能计算挑战和理论建模和分析的研究人员之间的合作带头。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Scalable Approximation Algorithm for Weighted Longest Common Subsequence
加权最长公共子序列的可扩展近似算法
- DOI:10.1007/978-3-030-85665-6_23
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Buhler, J.;Lavastida, T.;Lu, K.;Moseley, B.
- 通讯作者:Moseley, B.
On Functional Aggregate Queries with Additive Inequalities
- DOI:10.1145/3294052.3319694
- 发表时间:2018-12
- 期刊:
- 影响因子:0
- 作者:Mahmoud Abo Khamis;Ryan R. Curtin;Benjamin Moseley;H. Ngo;X. Nguyen;Dan Olteanu;Maximilian Schleich
- 通讯作者:Mahmoud Abo Khamis;Ryan R. Curtin;Benjamin Moseley;H. Ngo;X. Nguyen;Dan Olteanu;Maximilian Schleich
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Moseley其他文献
On the Randomized Competitive Ratio of Reordering Buffer Management with Non-Uniform Costs
成本不均匀的重排序缓冲区管理的随机竞争比
- DOI:
10.1007/978-3-662-47672-7_7 - 发表时间:
2015 - 期刊:
- 影响因子:2
- 作者:
Noa Avigdor;Sungjin Im;Benjamin Moseley;Y. Rabani - 通讯作者:
Y. Rabani
Non-clairvoyantly Scheduling to Minimize Convex Functions
非透视调度以最小化凸函数
- DOI:
10.1007/s00453-019-00597-2 - 发表时间:
2019 - 期刊:
- 影响因子:1.1
- 作者:
K. Fox;Sungjin Im;Janardhan Kulkarni;Benjamin Moseley - 通讯作者:
Benjamin Moseley
Scheduling to minimize energy and flow time in broadcast scheduling
在广播调度中最小化能量和流时间的调度
- DOI:
10.1007/s10951-014-0371-3 - 发表时间:
2010 - 期刊:
- 影响因子:2
- 作者:
Benjamin Moseley - 通讯作者:
Benjamin Moseley
General Profit Scheduling and the Power of Migration on Heterogeneous Machines
一般利润计划和异构机器上的迁移能力
- DOI:
10.1145/2935764.2935771 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Sungjin Im;Benjamin Moseley - 通讯作者:
Benjamin Moseley
Efficient Nonmyopic Active Search
高效的非近视主动搜索
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Shali Jiang;Gustavo Malkomes;Geoffrey A. Converse;Alyssa Shofner;Benjamin Moseley;R. Garnett - 通讯作者:
R. Garnett
Benjamin Moseley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Moseley', 18)}}的其他基金
Collaborative Research: AF: Small: Foundations of Algorithms Augmented with Predictions
合作研究:AF:小型:预测增强的算法基础
- 批准号:
2121744 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Pushing the Theoretical Limits of Scalable Distributed Algorithms
职业:突破可扩展分布式算法的理论极限
- 批准号:
1845146 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
AF: Small: Collaborative Research: Algorithmic and Computational Frontiers of MapReduce for Big Data Analysis
AF:小型:协作研究:用于大数据分析的 MapReduce 算法和计算前沿
- 批准号:
1830711 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Harnessing the Power of High-Bandwidth Memory via Provably Efficient Parallel Algorithms
SPX:协作研究:通过可证明高效的并行算法利用高带宽内存的力量
- 批准号:
1824303 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
AF: Small: Collaborative Research: Algorithmic and Computational Frontiers of MapReduce for Big Data Analysis
AF:小型:协作研究:用于大数据分析的 MapReduce 算法和计算前沿
- 批准号:
1617724 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似海外基金
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
- 批准号:
2408925 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
- 批准号:
2401544 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
- 批准号:
2412182 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Cross-stack Memory Optimizations for Boosting I/O Performance of Deep Learning HPC Applications
SPX:协作研究:用于提升深度学习 HPC 应用程序 I/O 性能的跨堆栈内存优化
- 批准号:
2318628 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
SPX: Collaborative Research: NG4S: A Next-generation Geo-distributed Scalable Stateful Stream Processing System
SPX:合作研究:NG4S:下一代地理分布式可扩展状态流处理系统
- 批准号:
2202859 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
- 批准号:
2333009 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Memory Fabric: Data Management for Large-scale Hybrid Memory Systems
SPX:协作研究:内存结构:大规模混合内存系统的数据管理
- 批准号:
2132049 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
- 批准号:
2113307 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
- 批准号:
1919117 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
- 批准号:
1918987 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant