SPX: Collaborative Research: Multicore to Wide Area Analytics on Streaming Data
SPX:协作研究:流数据的多核到广域分析
基本信息
- 批准号:1725663
- 负责人:
- 金额:$ 49.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In today's big data era, there is an urgent need for methods that can quickly derive analytical insights from large volumes of data that are continuously generated. Such streaming data include video, audio, activity logs, and sensor data, and are generated on a massive scale all over the world. The need for real-time streaming analytics can only be fulfilled with the help of appropriately designed parallel and distributed algorithms. However, parallel and distributed computing systems come in a variety of shapes and sizes, and algorithms should be designed to match the characteristics of the underlying system. This project develops methods for analyzing massive streaming data on computing systems ranging from machines with multiple cores sharing memory to geo-distributed data centers communicating over wide-area networks. The results of this research are expected to improve the efficiency, latency, and throughput of streaming analytics. Due to the foundational nature of the analytical tasks considered, results of this project will impact disciplines that use large-scale machine learning and graph analytics, including cybersecurity, social network analysis, and transportation. Resulting software will be released as toolkits on stream processing platforms, and deployed in a smart-city camera infrastructure. Synergy between the research goals and the teaching goals of the PIs will lead to new instructional material in existing courses as well as development of new courses in data analytics. Individuals from underrepresented groups will be included as a part of the project. The project will benefit from and strengthen collaborations between academia, industry, and national labs on streaming analytics. The first technical thrust of the project is on designing shared memory parallel algorithms for computation on data streams, that can achieve a high throughput and fast convergence for complex analytics tasks. The second thrust is on designing distributed streaming algorithms that can tolerate variable communication delays and adapt to available bandwidth in a wide-area network, through identifying good tradeoffs between freshness of results and volume of communication. These advances will be studied in the context of fundamental graph analytics and machine learning tasks such as subgraph counting, graph connectivity and clustering, matrix factorization, and deep networks. The project will utilize the vast body of theory and techniques developed in the realm of parallel computing in the design of methods for processing streaming data, leading to a toolkit of techniques that can be reused across applications. The project will also lead to advances in sequential streaming and incremental algorithms for certain problems; for instance, problems in machine learning that use iterative convergent methods. Based on the techniques designed, the project will design and build a hierarchical parameter server that operates effectively across the spectrum from multicore machines to data centers to wide-area data sources.
在当今的大数据时代,迫切需要能够从不断生成的大量数据中快速获得分析见解的方法。 此类流数据包括视频、音频、活动日志和传感器数据,并且在世界各地大规模生成。 只有借助适当设计的并行和分布式算法才能满足实时流分析的需求。然而,并行和分布式计算系统有多种形状和规模,算法的设计应与底层系统的特征相匹配。该项目开发了用于分析计算系统上的大量流数据的方法,这些计算系统范围从具有共享内存的多核机器到通过广域网通信的地理分布式数据中心。这项研究的结果预计将提高流分析的效率、延迟和吞吐量。 由于所考虑的分析任务的基础性质,该项目的结果将影响使用大规模机器学习和图形分析的学科,包括网络安全、社交网络分析和交通。生成的软件将作为流处理平台上的工具包发布,并部署在智能城市摄像头基础设施中。 PI 的研究目标和教学目标之间的协同作用将导致现有课程中的新教学材料以及数据分析新课程的开发。来自代表性不足群体的个人将被纳入该项目。该项目将受益于并加强学术界、工业界和国家实验室之间在流分析方面的合作。该项目的第一个技术重点是设计用于数据流计算的共享内存并行算法,该算法可以实现复杂分析任务的高吞吐量和快速收敛。第二个重点是设计分布式流算法,通过在结果的新鲜度和通信量之间找到良好的权衡,可以容忍可变的通信延迟并适应广域网中的可用带宽。这些进展将在基本图分析和机器学习任务的背景下进行研究,例如子图计数、图连接和聚类、矩阵分解和深度网络。该项目将利用并行计算领域开发的大量理论和技术来设计处理流数据的方法,从而形成一个可以跨应用程序重用的技术工具包。该项目还将推动针对某些问题的顺序流和增量算法的进步;例如,使用迭代收敛方法的机器学习问题。根据设计的技术,该项目将设计和构建一个分层参数服务器,该服务器可以在从多核机器到数据中心再到广域数据源的范围内有效运行。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DriftSurf: Stable-State / Reactive-State Learning under Concept Drift
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Ashraf Tahmasbi;Ellango Jothimurugesan;Srikanta Tirthapura;Phillip B. Gibbons
- 通讯作者:Ashraf Tahmasbi;Ellango Jothimurugesan;Srikanta Tirthapura;Phillip B. Gibbons
The Non-IID Data Quagmire of Decentralized Machine Learning
- DOI:
- 发表时间:2019-10
- 期刊:
- 影响因子:0
- 作者:Kevin Hsieh;Amar Phanishayee;O. Mutlu;Phillip B. Gibbons
- 通讯作者:Kevin Hsieh;Amar Phanishayee;O. Mutlu;Phillip B. Gibbons
Automating Dependence-Aware Parallelization of Machine Learning Training on Distributed Shared Memory
- DOI:10.1145/3302424.3303954
- 发表时间:2019-03
- 期刊:
- 影响因子:0
- 作者:Jinliang Wei;Garth A. Gibson;Phillip B. Gibbons;E. Xing
- 通讯作者:Jinliang Wei;Garth A. Gibson;Phillip B. Gibbons;E. Xing
Focus: Querying Large Video Datasets with Low Latency and Low Cost
- DOI:
- 发表时间:2018-01
- 期刊:
- 影响因子:0
- 作者:Kevin Hsieh;Ganesh Ananthanarayanan;P. Bodík;P. Bahl;Matthai Philipose;Phillip B. Gibbons;O. Mutlu
- 通讯作者:Kevin Hsieh;Ganesh Ananthanarayanan;P. Bodík;P. Bahl;Matthai Philipose;Phillip B. Gibbons;O. Mutlu
Variance-Reduced Stochastic Gradient Descent on Streaming Data
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Ellango Jothimurugesan;Ashraf Tahmasbi;Phillip B. Gibbons;Srikanta Tirthapura
- 通讯作者:Ellango Jothimurugesan;Ashraf Tahmasbi;Phillip B. Gibbons;Srikanta Tirthapura
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Phillip Gibbons其他文献
Phillip Gibbons的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Phillip Gibbons', 18)}}的其他基金
Travel: NSF Student Travel Grant for the Seventh Conference on Machine Learning and Systems (MLSys 2024)
旅行:第七届机器学习和系统会议 (MLSys 2024) 的 NSF 学生旅行补助金
- 批准号:
2423768 - 财政年份:2024
- 资助金额:
$ 49.2万 - 项目类别:
Standard Grant
PPoSS: Planning: Prescriptive Memory: Razing the Semantic Wall Between Applications and Computer Systems
PPoSS:规划:规定性记忆:消除应用程序和计算机系统之间的语义墙
- 批准号:
2028949 - 财政年份:2020
- 资助金额:
$ 49.2万 - 项目类别:
Standard Grant
NSF Student Travel Grant for 2018 ACM Symposium on Cloud Computing (SoCC)
2018 年 ACM 云计算研讨会 (SoCC) 的 NSF 学生旅费补助
- 批准号:
1849140 - 财政年份:2019
- 资助金额:
$ 49.2万 - 项目类别:
Standard Grant
相似海外基金
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
- 批准号:
2408925 - 财政年份:2023
- 资助金额:
$ 49.2万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
- 批准号:
2401544 - 财政年份:2023
- 资助金额:
$ 49.2万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
- 批准号:
2412182 - 财政年份:2023
- 资助金额:
$ 49.2万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Cross-stack Memory Optimizations for Boosting I/O Performance of Deep Learning HPC Applications
SPX:协作研究:用于提升深度学习 HPC 应用程序 I/O 性能的跨堆栈内存优化
- 批准号:
2318628 - 财政年份:2022
- 资助金额:
$ 49.2万 - 项目类别:
Standard Grant
SPX: Collaborative Research: NG4S: A Next-generation Geo-distributed Scalable Stateful Stream Processing System
SPX:合作研究:NG4S:下一代地理分布式可扩展状态流处理系统
- 批准号:
2202859 - 财政年份:2022
- 资助金额:
$ 49.2万 - 项目类别:
Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
- 批准号:
2333009 - 财政年份:2022
- 资助金额:
$ 49.2万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Memory Fabric: Data Management for Large-scale Hybrid Memory Systems
SPX:协作研究:内存结构:大规模混合内存系统的数据管理
- 批准号:
2132049 - 财政年份:2021
- 资助金额:
$ 49.2万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
- 批准号:
2113307 - 财政年份:2020
- 资助金额:
$ 49.2万 - 项目类别:
Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
- 批准号:
1919117 - 财政年份:2019
- 资助金额:
$ 49.2万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
- 批准号:
1918987 - 财政年份:2019
- 资助金额:
$ 49.2万 - 项目类别:
Standard Grant














{{item.name}}会员




