SPX: Collaborative Research: Eat your Wheaties: Multi-Grain Compilers for Parallel Builds at Every Scale
SPX:协作研究:吃你的小麦:用于各种规模并行构建的多粒度编译器
基本信息
- 批准号:1725679
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Title: SPX: Collaborative Research: Multi-Grain Compilers for Parallel Builds at Every ScaleModern software development practices at companies such as Google and Facebook have led to compilation -- the process of transforming source programs into executable programs -- becoming a significant, time-consuming, resource-intensive process. Unfortunately, even state of the art compilers and build systems do not do a good job of exploiting emerging, high-performance, highly-parallel hardware, so software development is hampered by the still-slow process of compilation. This project aims to develop new techniques to speed up the process of compilation. The intellectual merits are designing new compiler internals, algorithms, and schedulers to enable compilers to take advantage of modern hardware capabilities. The project's broader significance and importance are that the process of compilation undergirds virtually every aspect of modern software, and hence modern life: speeding up compilation enables any type of software to be developed more quickly, providing new features to users and more quickly squashing potentially catastrophic bugs.The project revolves around three main thrusts. First, the PIs are developing new representations for compiler internals that better fit the memory hierarchy of modern machines, eschewing pointer-based representations for dense representations. They are designing techniques to allow programmers to write their compiler passes at a high level while automatically converting them to use the dense representation. Second, the PIs are designing new algorithms to optimize compiler passes. These are transformations of internal compiler algorithms to promote locality (by combining passes that operate on similar portions of a program) and to enhance parallelism (by eliminating unnecessary synchronization between passes). Finally, the PIs are creating new scheduling techniques to allow the new highly-parallel compiler algorithms to be effectively mapped to the parallel and distributed hardware on which modern build systems execute.
标题:SPX:协作研究:针对每个规模的并行构建的多粒度编译器Google和Facebook等公司的现代软件开发实践导致编译--将源程序转换为可执行程序的过程--成为一个重要的、耗时的、资源密集型的过程。不幸的是,即使是最先进的编译器和构建系统在利用新兴的高性能、高度并行的硬件方面也做得不好,因此仍然缓慢的编译过程阻碍了软件开发。这个项目的目的是开发新的技术来加快编译过程。智能的优点是设计了新的编译器内部结构、算法和调度器,使编译器能够利用现代硬件能力。该项目更广泛的意义和重要性在于,编译过程几乎支撑了现代软件的每一个方面,因此也是现代生活的基础:加快编译速度使任何类型的软件都能更快地开发,为用户提供新功能,并更快地消除潜在的灾难性错误。该项目围绕三个主要方面展开。首先,PI正在为编译器内部开发新的表示法,以更好地适应现代机器的内存层次结构,避免使用基于指针的表示法来实现密集表示法。他们正在设计技术,允许程序员在高级编写编译器通道的同时,自动转换它们以使用密集表示法。其次,PI正在设计新的算法来优化编译器通道。这些是内部编译器算法的转换,以促进局部性(通过组合在程序的相似部分上操作的遍)并增强并行性(通过消除遍之间不必要的同步)。最后,PI正在创建新的调度技术,以允许新的高度并行的编译器算法有效地映射到现代构建系统在其上执行的并行和分布式硬件。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Forward build systems, formally
正向构建系统,正式
- DOI:10.1145/3497775.3503687
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Spall, Sarah;Mitchell, Neil;Tobin-Hochstadt, Sam
- 通讯作者:Tobin-Hochstadt, Sam
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sam Tobin-Hochstadt其他文献
Sam Tobin-Hochstadt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sam Tobin-Hochstadt', 18)}}的其他基金
SHF: MEDIUM: Performant Sound Gradual Typing
SHF:中:高性能声音渐进打字
- 批准号:
1763922 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
SHF: Small: Behavioral Software Contract Verification
SHF:小型:行为软件合同验证
- 批准号:
1540276 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SHF: SMALL: COLLABORATIVE RESEARCH: Compiler Coaching
SHF:小型:协作研究:编译器指导
- 批准号:
1421652 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SHF: Small: Behavioral Software Contract Verification
SHF:小型:行为软件合同验证
- 批准号:
1218390 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
- 批准号:
2408925 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
- 批准号:
2401544 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
- 批准号:
2412182 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Cross-stack Memory Optimizations for Boosting I/O Performance of Deep Learning HPC Applications
SPX:协作研究:用于提升深度学习 HPC 应用程序 I/O 性能的跨堆栈内存优化
- 批准号:
2318628 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SPX: Collaborative Research: NG4S: A Next-generation Geo-distributed Scalable Stateful Stream Processing System
SPX:合作研究:NG4S:下一代地理分布式可扩展状态流处理系统
- 批准号:
2202859 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
- 批准号:
2333009 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Memory Fabric: Data Management for Large-scale Hybrid Memory Systems
SPX:协作研究:内存结构:大规模混合内存系统的数据管理
- 批准号:
2132049 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
- 批准号:
2113307 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
- 批准号:
1919117 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
- 批准号:
1918987 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant