MRI: Acquisition of Adaptive Cluster for Performance and Forensics Analysis of Distributed Machine Learning

MRI:获取自适应集群以实现分布式机器学习的性能和取证分析

基本信息

  • 批准号:
    1726069
  • 负责人:
  • 金额:
    $ 11.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-10-01 至 2020-09-30
  • 项目状态:
    已结题

项目摘要

This project, acquiring a computational cluster, aims to provide opportunities for research in machine-learning, algorithm development, and protection of information in multiple environments. The capacity to evaluate and analyze performance and residue data generation in data mining, machine learning computations, should allow better control and less risk of breaches in cybersecurity. The availability of these enhancements would also permit use of these systems for applied, interdisciplinary research using large-scale data and cross-correlation analyses for predictive modeling. The investigators measure performance systematically to support forensic analysis of data residues, in order to detect possible security risks in the use of such platforms. The procurement of the instrumentation yields a significant expansion in data mining, security, and forensics research. Core research foci in cyber security, digital forensics, and data mining research enables a work plan based on defined problems in distributed computing environments related to performance, algorithms, and data security. The gained instrument and expertise provide the institution with the ability to support national level customers such as U.S. Army Aviation & Missile Research, Development and Engineering Center, National Institute of Health (NIH), and other government agencies that depend on effective and secure distributed learning to analyze and process sensitive data. A key issue with solving both the forensics challenges and the performance analysis is having access to an instrument such that investigators can- Tune, adjust, and redeploy environments, - Take nodes offline to be examined forensically, - Ensure a consistent baseline exists against which other environments are compared, and - Run meaningful experiments within their discipline while enabling the collection of valuable performance and forensics data (permitting non-data mining and utilizing digital forensics).The proposed adaptive cluster instrument enables these four goals.Broader Impacts:The computational research capabilities provide essential resources for undergraduate and graduate students' research as well as for training and exposure activities involving K-12. Students will be afforded hands-on opportunities in research and classroom activities directly utilizing the cluster. The skills gained should lead directly to internships and permanent employment opportunities for doctoral students in the six colleges and/or institutes. The university services a high percentage of rural and financially depressed areas; has a 34% enrollment of non-white students, with 60% female enrollment. The instrumentation offers exposure opportunities for cohort activities to Scholarships for Service Program.
这个项目,获取一个计算集群,旨在为在多种环境中研究机器学习、算法开发和信息保护提供机会。评估和分析数据挖掘和机器学习计算中的性能和剩余数据生成的能力,应该能够更好地控制和降低网络安全中的漏洞风险。这些改进的提供还将允许使用这些系统进行应用的跨学科研究,使用大规模数据和相互关联分析进行预测建模。调查人员系统地衡量业绩,以支持对数据残留物进行法医分析,以检测在使用这类平台时可能存在的安全风险。仪器的采购在数据挖掘、安全和取证研究方面产生了显著的扩展。专注于网络安全、数字取证和数据挖掘研究的核心研究使工作计划能够基于分布式计算环境中与性能、算法和数据安全相关的已定义问题。获得的仪器和专业知识使该机构有能力支持国家级客户,如美国陆军航空和导弹研究、开发和工程中心、国家卫生研究所(NIH)和其他依赖有效和安全的分布式学习来分析和处理敏感数据的政府机构。解决取证挑战和性能分析的一个关键问题是能够访问工具,以便调查人员可以调整、调整和重新部署环境,-使节点离线进行取证检查,-确保存在与其他环境进行比较的一致基线,以及-在其学科内运行有意义的实验,同时支持收集有价值的性能和取证数据(允许非数据挖掘和利用数字取证)。建议的自适应集群工具实现了这四个目标。广泛的影响:计算研究能力为本科生和研究生的研究以及与K-12有关的培训和曝光活动提供了必要的资源。学生将获得直接利用集群进行研究和课堂活动的实践机会。所获得的技能应直接为博士生在六个学院和/或研究所提供实习机会和永久就业机会。这所大学为农村和经济困难地区提供服务的比例很高;非白人学生的入学率为34%,女性入学率为60%。该仪器为队列活动提供了接触服务奖学金计划的机会。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Big Data Forensics: Hadoop 3.2.0 Reconstruction
大数据取证:Hadoop 3.2.0重构
Insight from a Containerized Kubernetes Workload Introspection
容器化 Kubernetes 工作负载自省的见解
Insight from a Docker Container Introspection
  • DOI:
    10.24251/hicss.2019.863
  • 发表时间:
    2019-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas Watts;Ryan G. Benton;W. Glisson;Jordan Shropshire
  • 通讯作者:
    Thomas Watts;Ryan G. Benton;W. Glisson;Jordan Shropshire
DFS3: automated distributed file system storage state reconstruction
DFS3:自动化分布式文件系统存储状态重建
  • DOI:
    10.1145/3407023.3407056
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harshany, Edward;Benton, Ryan;Bourrie, David;Black, Michael;Glisson, William
  • 通讯作者:
    Glisson, William
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ryan Benton其他文献

Container and VM Visualization for Rapid Incident Response
用于快速事件响应的容器和虚拟机可视化
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jordan Shropshire;Ryan Benton
  • 通讯作者:
    Ryan Benton
Effectiveness of Image-Based Deep Learning on Token-Level Software Vulnerability Detection
基于图像的深度学习在令牌级软件漏洞检测上的有效性
  • DOI:
    10.1109/southeastcon52093.2024.10500127
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dylan Johnson;Jeffrey T. McDonald;Ryan Benton;David M. Bourrie
  • 通讯作者:
    David M. Bourrie
DFRWS 2020 EU e Proceedings of the Seventh Annual DFRWS Europe Big Data Forensics: Hadoop 3.2.0 Reconstruction
DFRWS 2020 EU e 第七届年度 DFRWS 欧洲大数据取证:Hadoop 3.2.0 重构
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Edward Harshany;Ryan Benton;David M. Bourrie;W. Glisson
  • 通讯作者:
    W. Glisson
Machine Learning-Based Android Malware Detection Using Manifest Permissions
使用清单权限进行基于机器学习的 Android 恶意软件检测
Profiling CPU Behavior for Detection of Android Ransomware
分析 CPU 行为以检测 Android 勒索软件
  • DOI:
    10.1109/southeastcon48659.2022.9764053
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Reeve Cabral;J. McDonald;L. Hively;Ryan Benton
  • 通讯作者:
    Ryan Benton

Ryan Benton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ryan Benton', 18)}}的其他基金

SBIR Phase I: Automated Image Annotation
SBIR 第一阶段:自动图像注释
  • 批准号:
    0441570
  • 财政年份:
    2005
  • 资助金额:
    $ 11.51万
  • 项目类别:
    Standard Grant

相似海外基金

Once Bitten: Acquisition of Malaria Adaptive Immunity (OBAMA - Immunity)
一旦被咬:获得疟疾适应性免疫(奥巴马 - 免疫)
  • 批准号:
    10753364
  • 财政年份:
    2023
  • 资助金额:
    $ 11.51万
  • 项目类别:
Using Adaptive Inbodied Motor e-learning Interactions to improve cognitive performance in language acquisition
使用自适应身体运动电子学习交互来提高语言习得的认知表现
  • 批准号:
    2481028
  • 财政年份:
    2020
  • 资助金额:
    $ 11.51万
  • 项目类别:
    Studentship
MRI: Acquisition of an Adaptive Computing Infrastructure to Support Compute- and Data-Intensive Multidisciplinary Research
MRI:收购自适应计算基础设施以支持计算和数据密集型多学科研究
  • 批准号:
    2018631
  • 财政年份:
    2020
  • 资助金额:
    $ 11.51万
  • 项目类别:
    Standard Grant
Acquisition and Reproduction of Adaptive Behavioral Selection Indexes in Insect Using Omnidirectional Moving Treadmill
利用全向移动跑步机获取和再现昆虫适应性行为选择指标
  • 批准号:
    19K14943
  • 财政年份:
    2019
  • 资助金额:
    $ 11.51万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
How Does an Adaptive Technology Support Python Acquisition?
自适应技术如何支持Python学习?
  • 批准号:
    540904-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 11.51万
  • 项目类别:
    University Undergraduate Student Research Awards
Cross-layer Adaptive Rate/Resolution Design for Energy-Aware Acquisition of Spectrally Sparse Signals Leveraging Spin-based Devices
利用基于自旋的器件实现频谱稀疏信号能量感知采集的跨层自适应速率/分辨率设计
  • 批准号:
    1810256
  • 财政年份:
    2018
  • 资助金额:
    $ 11.51万
  • 项目类别:
    Standard Grant
Elucidating the molecular mechanisms of adaptive evolution from bacterial nutrient acquisition strategies
从细菌营养获取策略阐明适应性进化的分子机制
  • 批准号:
    17H03794
  • 财政年份:
    2017
  • 资助金额:
    $ 11.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Providing an Adaptive Learning Environment for the Acquisition of High Value Manufacturing Skills
协作研究:为获得高价值制造技能提供适应性学习环境
  • 批准号:
    1501938
  • 财政年份:
    2015
  • 资助金额:
    $ 11.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Providing an Adaptive Learning Environment for the Acquisition of High Value Manufacturing Skills
协作研究:为获得高价值制造技能提供适应性学习环境
  • 批准号:
    1501952
  • 财政年份:
    2015
  • 资助金额:
    $ 11.51万
  • 项目类别:
    Standard Grant
Elucidation of perception-action coupling in stroke survivors and application to the acquisition of adaptive sensorimotor control
中风幸存者知觉-动作耦合的阐明及其在获得自适应感觉运动控制中的应用
  • 批准号:
    26350603
  • 财政年份:
    2014
  • 资助金额:
    $ 11.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了