MRI: Acquisition of a Computing Cluster for Gravitational-Wave and Multimessenger Astrophysics in the Era of LIGO Detections

MRI:在 LIGO 探测时代获取用于引力波和多信使天体物理的计算集群

基本信息

  • 批准号:
    1726215
  • 负责人:
  • 金额:
    $ 34.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

This MRI award supports a team of researchers at the Rochester Institute of Technology's (RIT) Center for Computational Relativity and Gravitation (CCRG) to acquire, deploy, and maintain a new state-of-the art computational cluster, GreenPrairie, to be used in research at the frontiers of gravitational physics, relativistic astrophysics, advanced high-performance computation, and scientific visualization. GreenPrairie will be the main computational workhorse of the CCRG, and it will directly enable the research of undergraduate and graduate students, postdoctoral researchers, and faculty across four departments and three colleges at RIT. It will foster the growth of three graduate programs in astrophysics, mathematical modeling, and computer science, and support research on behalf of several large community-wide collaborations in numerical relativity, gravitational waveform source modeling, and relativistic astrophysics. Scientific visualizations from the cluster will be used to support a funded REU program on multi-messenger astrophysics, and programs at RIT's National Technical Institute for the Deaf to promote science to the deaf and hard-of-hearing communities. The cluster will also be a vehicle for public outreach events on science, mathematics, and computing through site visits and annual community-wide public exhibits.GreenPrairie consists of a 1296-core, high-speed, large-memory computer cluster, with 768 TB of attached storage, and will be housed within the "Black Hole Lab" computer facility at the CCRG. Research with GreenPrairie will focus on some of the most extreme phenomena in the universe, where the strongest gravitational and magnetic fields interact with ultra-relativistic matter and high-energy radiation, that can only be studied through advanced, large-scale computation and visualization. The cluster will be used for timely simulations of key astrophysical sources for advanced LIGO, which uses information from theoretical waveforms to interpret the observed signals and determine the nature of the astrophysical sources. Specifically, the cluster will be used to simulate black-hole binaries, and their merger waveforms, across the entire space of parameters relevant to advanced LIGO and next generation detectors, as well as fast response simulations triggered by gravitational wave detections. The cluster will also be used to study accretion problems involving close and/or merging binary black hole systems which are expected to be observable in the electromagnetic spectrum by current and future astronomical surveys, such as LSST. Finally, the cluster will be a testbed for developing novel computational techniques that will permit efficient computation of heterogeneous systems involving multiple kinds of physics with very different length scales, and multiple evolution schemes.
该MRI奖项支持罗切斯特理工学院(RIT)计算相对论和引力中心(CCRG)的一组研究人员获得、部署和维护一个新的最先进的计算集群GreenPrairie,用于引力物理学、相对论天体物理学、先进的高性能计算和科学可视化的前沿研究。GreenPrairie将成为CCRG的主要计算主力,它将直接支持RIT四个部门和三个学院的本科生和研究生,博士后研究人员和教师的研究。它将促进天体物理学,数学建模和计算机科学三个研究生课程的发展,并支持代表数值相对论,引力波形源建模和相对论天体物理学的几个大型社区合作的研究。该集群的科学可视化将用于支持一个受资助的REU多信使天体物理学项目,以及RIT国家聋人技术研究所向聋人和听力障碍社区推广科学的项目。 该集群还将通过实地考察和年度社区范围的公共展览,成为科学、数学和计算方面的公共宣传活动的载体。GreenPrairie由一个1296核、高速、大内存计算机集群组成,附带768 TB的存储空间,并将被安置在CCRG的“黑洞实验室”计算机设施内。GreenPrairie的研究将集中在宇宙中一些最极端的现象上,最强的引力和磁场与超相对论物质和高能辐射相互作用,只能通过先进的大规模计算和可视化来研究。该集群将用于高级LIGO的关键天体物理源的及时模拟,该系统使用理论波形的信息来解释观测到的信号并确定天体物理源的性质。具体来说,该集群将用于模拟黑洞双星及其合并波形,跨越与先进LIGO和下一代探测器相关的整个参数空间,以及由引力波探测触发的快速响应模拟。该星团还将用于研究涉及近距离和/或合并的双黑洞系统的吸积问题,预计这些系统将通过当前和未来的天文观测(如LSST)在电磁频谱中进行观测。最后,集群将成为开发新的计算技术的试验平台,这些技术将允许有效计算涉及多种物理学的异构系统,这些物理学具有非常不同的长度尺度和多种进化方案。

项目成果

期刊论文数量(66)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Third RIT binary black hole simulations catalog
第三个 RIT 双黑洞模拟目录
  • DOI:
    10.1103/physrevd.102.104018
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Healy, James;Lousto, Carlos O.
  • 通讯作者:
    Lousto, Carlos O.
Minidisk Accretion onto Spinning Black Hole Binaries: Quasi-periodicities and Outflows
旋转黑洞双星上的迷你盘吸积:准周期性和流出
  • DOI:
    10.3847/1538-4357/ac532a
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Combi, Luciano;Lopez Armengol, Federico G.;Campanelli, Manuela;Noble, Scott C.;Avara, Mark;Krolik, Julian H.;Bowen, Dennis
  • 通讯作者:
    Bowen, Dennis
Quasi-periodicity of Supermassive Binary Black Hole Accretion Approaching Merger
超大质量双黑洞吸积接近合并的准周期性
  • DOI:
    10.3847/1538-4357/ab2453
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bowen, Dennis B.;Mewes, Vassilios;Noble, Scott C.;Avara, Mark;Campanelli, Manuela;Krolik, Julian H.
  • 通讯作者:
    Krolik, Julian H.
Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube
在首次观测运行期间使用先进的 LIGO、ANTARES 和 IceCube 搜索引力波和高能中微子的多信使源
  • DOI:
    10.3847/1538-4357/aaf21d
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Albert, A.;André, M.;Anghinolfi, M.;Ardid, M.;Aubert, J.-J.;Aublin, J.;Avgitas, T.;Baret, B.;Barrios-Martí, J.;Basa, S.
  • 通讯作者:
    Basa, S.
Hybrid waveforms for generic precessing binaries for gravitational-wave data analysis
用于引力波数据分析的通用处理二进制文件的混合波形
  • DOI:
    10.1103/physrevd.102.024012
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Sadiq, Jam;Zlochower, Yosef;O’Shaughnessy, Richard;Lange, Jacob
  • 通讯作者:
    Lange, Jacob
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Manuela Campanelli其他文献

突発的重力波カタログ2(GWTC-2)と重力波物理学
引力波目录 2 (GWTC-2) 和引力波物理学
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hiroyuki Nakano;Brennan Ireland;Manuela Campanelli;Eric J. West;中野寛之
  • 通讯作者:
    中野寛之
Spinning, Precessing, Black Hole Binary Spacetime via Asymptotic Matching
通过渐近匹配的旋转、进动、黑洞二元时空
  • DOI:
    10.1088/0264-9381/33/24/247001
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hiroyuki Nakano;Brennan Ireland;Manuela Campanelli;Eric J. West
  • 通讯作者:
    Eric J. West
Multiband gravitational-wave astronomy: Observing binary inspirals
多波段引力波天文学:观测双星螺旋
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    中野寛之;Brennan Ireland;Ofek Birnholtz;Eric West;Manuela Campanelli;中野 寛之
  • 通讯作者:
    中野 寛之
Inspiralling, nonprecessing, spinning black hole binary spacetimevia asymptotic matching
通过渐近匹配的吸气、非进动、旋转黑洞二元时空
  • DOI:
    10.1103/physrevd.93.104057
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brennan Ireland;Bruno C. Mundim;Hiroyuki Nakano;Manuela Campanelli
  • 通讯作者:
    Manuela Campanelli
Inspiraling black-hole binary spacetimes: Challenges in transitioning from analytical to numerical techniques
鼓舞人心的黑洞二元时空:从分析技术过渡到数值技术的挑战
  • DOI:
    10.1103/physrevd.93.124072
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yosef Zlochower;Hiroyuki Nakano;Bruno C. Mundim;Manuela Campanelli;Scott Noble;Miguel Zilhao
  • 通讯作者:
    Miguel Zilhao

Manuela Campanelli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Manuela Campanelli', 18)}}的其他基金

Collaborative Research: Deploying Curvilinear Coordinate and Multipatch Methods on Neutron Star Mergers
合作研究:在中子星合并中部署曲线坐标和多面体方法
  • 批准号:
    2110338
  • 财政年份:
    2021
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Computing System for Large Simulation Data Sets in Multimessenger Astrophysics
MRI:获取多信使天体物理学中大型模拟数据集的计算系统
  • 批准号:
    2018420
  • 财政年份:
    2020
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Standard Grant
WoU-MMA: Collaborative Research: Supermassive Binary Black Hole Mergers: Accretion Dynamics and Electromagnetic Output
WoU-MMA:合作研究:超大质量双黑洞合并:吸积动力学和电磁输出
  • 批准号:
    2009330
  • 财政年份:
    2020
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Standard Grant
Supermassive Black Holes Approaching Merger: Accretion Dynamics, Jets and Electromagnetic Signals
即将合并的超大质量黑洞:吸积动力学、喷流和电磁信号
  • 批准号:
    2031744
  • 财政年份:
    2020
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Standard Grant
Collaborative Research: Photons from Binary Black Hole Inspirals
合作研究:来自二元黑洞螺旋的光子
  • 批准号:
    1811228
  • 财政年份:
    2018
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Standard Grant
Collaborative Research: Curvilinear and Multipatch Methods for General Relativistic Astrophysics in the Gravitational Wave Era
合作研究:引力波时代广义相对论天体物理学的曲线和多面体方法
  • 批准号:
    1707946
  • 财政年份:
    2017
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Standard Grant
SI2-SSI: Collaborative Research: Einstein Toolkit Community Integration and Data Exploration
SI2-SSI:协作研究:Einstein Toolkit 社区集成和数据探索
  • 批准号:
    1550436
  • 财政年份:
    2016
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Continuing Grant
Collaborative Research: Predicting the Transient Signals from Galactic Centers: Circumbinary Disks and Tidal Disruptions around Black Holes
合作研究:预测来自银河系中心的瞬态信号:环形盘和黑洞周围的潮汐扰动
  • 批准号:
    1516125
  • 财政年份:
    2015
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Standard Grant
Collaborative Research: Accretion Dynamics of Black Hole Mergers
合作研究:黑洞合并的吸积动力学
  • 批准号:
    1516150
  • 财政年份:
    2015
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Standard Grant
MRI: Acquisition of an Advanced Computing Cluster for General Relativistic Astrophysics
MRI:获取用于广义相对论天体物理学的高级计算集群
  • 批准号:
    1229173
  • 财政年份:
    2012
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Standard Grant

相似海外基金

MRI: Track 1 Acquisition of a High-Performance Computing System at New Mexico Tech
MRI:新墨西哥理工学院高性能计算系统的第一轨道采购
  • 批准号:
    2320162
  • 财政年份:
    2024
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Standard Grant
Equipment: MRI: Track 2 Acquisition of a High-Performance Computing Cluster for Boosting Artificial Intelligence Enabled Science, Engineering, and Education in South Carolina
设备: MRI:第二轨道收购高性能计算集群,以促进南卡罗来纳州人工智能支持的科学、工程和教育
  • 批准号:
    2320292
  • 财政年份:
    2023
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Standard Grant
MRI: Track 1 Acquisition of an HPC Cluster for Artificial Intelligence, Machine Learning, Scientific Computing, and Interdisciplinary Research
MRI:第一轨道收购用于人工智能、机器学习、科学计算和跨学科研究的 HPC 集群
  • 批准号:
    2320735
  • 财政年份:
    2023
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Standard Grant
Equipment: MRI: Track 1 Acquisition of Current Hardware to Enhance Computational Research on the ELSA High Performance Computing Cluster at The College of New Jersey
设备: MRI:第一轨道采购当前硬件,以增强新泽西学院 ELSA 高性能计算集群的计算研究
  • 批准号:
    2320244
  • 财政年份:
    2023
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Standard Grant
Equipment: MRI: Track 1 Acquisition of a GPU-Accelerated Computing Cluster for Advanced Optimization and Design in Multidisciplinary Research and Education
设备:MRI:Track 1 获取 GPU 加速计算集群,用于多学科研究和教育中的高级优化和设计
  • 批准号:
    2320649
  • 财政年份:
    2023
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a high-performance computing resource to enhance research and undergraduate education at the College of Staten Island
MRI:收购高性能计算资源以加强史坦顿岛学院的研究和本科教育
  • 批准号:
    2215760
  • 财政年份:
    2022
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a High-Performance Computational System for OAK Region to Enable Computing and Data Driven Discovery
MRI:为 OAK 地区采购高性能计算系统,以实现计算和数据驱动的发现
  • 批准号:
    2216084
  • 财政年份:
    2022
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Standard Grant
MRI: Acquisition of High-Performance Computing Cluster for Research in Engineering, Science, and Technology
MRI:收购高性能计算集群用于工程、科学和技术研究
  • 批准号:
    2216335
  • 财政年份:
    2022
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a GPU-based High Performance Computing Instrumentation for Smart City Research at Cleveland State University
MRI:克利夫兰州立大学为智能城市研究采购基于 GPU 的高性能计算仪器
  • 批准号:
    2215388
  • 财政年份:
    2022
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Heterogeneous High-Performance Computing Cluster Driven by Computational and Data-Intensive Multidisciplinary Research
MRI:获取由计算和数据密集型多学科研究驱动的异构高性能计算集群
  • 批准号:
    2216311
  • 财政年份:
    2022
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了