MRI: Acquisition of a Computing System for Large Simulation Data Sets in Multimessenger Astrophysics
MRI:获取多信使天体物理学中大型模拟数据集的计算系统
基本信息
- 批准号:2018420
- 负责人:
- 金额:$ 23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports research in relativity and relativistic astrophysics and it addresses the priority area of NSF's "Windows on the Universe" Big Idea. Astrophysics is currently undergoing an unprecedented transformation with the advent of multimessenger astronomy, which in turn is driven by the recent detection of gravitational waves from several black hole neutron star mergers, and by the avalanche of astronomical data that is now and will soon be collected by a range of powerful new and forthcoming facilities. Mergers of compact binary systems including neutron stars and black-holes of all mass ranges encode information about fundamental physics, demonstrate the behavior of matter in the most extreme environments in the Universe, give insights into the formation, acceleration and dissipation of the most powerful particle emission processes, and provide missing links in our understanding of the end stages of stellar evolution and of their astrophysical origin. The equipment proposed here will enable research in a broad range of research projects aimed at answering some the key unresolved questions about these mergers by providing key resources needed to analyze the huge data sets coming from large scale state-of-the-art simulations performed at the NSF's national supercomputers facilities. This new system will also allow the team to host a public data repository to share their results with the larger scientific community, useful for supporting further investigations, such as predicted multimessenger light curves, snapshots of ejecta structure at selected times, suitable for use as initial conditions for longer-term simulations, and tracer-particle trajectories useful for further nucleosynthesis calculations. These datasets will also be relevant for the interpretations of observations by current ground-based detectors, such as advanced LIGO, and similar detectors across the globe, future space-based gravitational wave missions, such as LISA, and upcoming major astronomical observatories such as The Vera Rubin's Large Synoptic Survey Telescope (LSST).This award supports the acquisition of a new data storage and analysis cluster to support multimessenger astrophysics. The system will consist of 16 analysis nodes and 3 petabytes of online storage, to be hosted at the Rochester Institute of Technology (RIT). The proposed system will enable the RIT group and their collaborators to store and analyze very large data sets produced by simulations carried out in both local computing clusters and at national supercomputing facilities, such as the Frontera exascale system. The new system will enable highly accurate modeling of compact objects that are key sources of gravitational waves, such as black hole and neutron star binaries and supermassive black hole binaries. These simulations often require years of post-simulation analysis to extract the relevant physics due to their complexity and size.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持相对论和相对论天体物理学的研究,并解决了NSF“宇宙之窗”大创意的优先领域。随着多信使天文学的出现,天体物理学目前正在经历一场前所未有的变革,而这又是由最近对几个黑洞中子星星合并产生的引力波的探测,以及一系列强大的新的和即将到来的设施现在和即将收集的大量天文数据所驱动的。 包括中子星和所有质量范围的黑洞在内的紧凑双星系统的合并编码了有关基本物理学的信息,展示了宇宙中最极端环境中物质的行为,深入了解了最强大粒子发射过程的形成,加速和耗散,并提供了我们对恒星演化的最后阶段及其天体物理起源的理解中缺失的环节。 这里提出的设备将使研究在广泛的研究项目,旨在回答一些关键的未解决的问题,这些合并提供关键资源,以分析巨大的数据集来自大型国家的最先进的模拟在美国国家科学基金会的国家超级计算机设施。这个新系统还将允许团队托管一个公共数据库,与更大的科学界分享他们的结果,这有助于支持进一步的研究,例如预测的多信使光变曲线,在选定时间的喷出物结构快照,适合用作长期模拟的初始条件,以及用于进一步核合成计算的示踪粒子轨迹。这些数据集还将与当前地面探测器(如先进的LIGO)和地球仪上的类似探测器、未来的天基引力波任务(如丽莎)、以及即将到来的主要天文观测站,如维拉鲁宾的大型综合巡天望远镜(LSST)该奖项支持购买新的数据存储和分析集群,以支持多信使天体物理学。该系统将由16个分析节点和3 PB的在线存储组成,托管在罗切斯特理工学院(RIT)。 拟议的系统将使RIT小组及其合作者能够存储和分析在本地计算集群和国家超级计算设施(如Frontera exascale系统)中进行的模拟产生的非常大的数据集。新系统将能够对引力波的关键来源紧凑物体进行高度精确的建模,例如黑洞和中子星星双星以及超大质量黑洞双星。由于这些模拟的复杂性和规模,通常需要数年的模拟后分析,以提取相关的物理。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(33)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hybrid waveforms for generic precessing binaries for gravitational-wave data analysis
用于引力波数据分析的通用处理二进制文件的混合波形
- DOI:10.1103/physrevd.102.024012
- 发表时间:2020
- 期刊:
- 影响因子:5
- 作者:Sadiq, Jam;Zlochower, Yosef;O’Shaughnessy, Richard;Lange, Jacob
- 通讯作者:Lange, Jacob
Population of Merging Compact Binaries Inferred Using Gravitational Waves through GWTC-3
- DOI:10.1103/physrevx.13.011048
- 发表时间:2021-11
- 期刊:
- 影响因子:12.5
- 作者:The Ligo Scientific Collaboration;The Virgo Collaboration;T. Abbott;T. Abbott;F. Acernese;K. Ackley
- 通讯作者:The Ligo Scientific Collaboration;The Virgo Collaboration;T. Abbott;T. Abbott;F. Acernese;K. Ackley
HARM3D+NUC: A New Method for Simulating the Post-merger Phase of Binary Neutron Star Mergers with GRMHD, Tabulated EOS, and Neutrino Leakage
- DOI:10.3847/1538-4357/ac1119
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:A. Murguia-Berthier;S. Noble;L. Roberts;E. Ramirez-Ruiz;Leonardo R. Werneck;Michael Kolacki;Z. Etienne
- 通讯作者:A. Murguia-Berthier;S. Noble;L. Roberts;E. Ramirez-Ruiz;Leonardo R. Werneck;Michael Kolacki;Z. Etienne
All-sky search for short gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run
在第三次 Advanced LIGO 和 Advanced Virgo 运行中对短引力波爆发进行全天搜索
- DOI:10.1103/physrevd.104.122004
- 发表时间:2021
- 期刊:
- 影响因子:5
- 作者:Abbott, R.;Abbott, T. D.;Acernese, F.;Ackley, K.;Adams, C.;Adhikari, N.;Adhikari, R. X.;Adya, V. B.;Affeldt, C.;Agarwal, D.
- 通讯作者:Agarwal, D.
Measuring the Hubble Constant with GW190521 as an Eccentric black hole Merger and Its Potential Electromagnetic Counterpart
- DOI:10.3847/2041-8213/abe388
- 发表时间:2021-02
- 期刊:
- 影响因子:0
- 作者:V. Gayathri;J. Healy;J. Lange;B. O'Brien;M. Szczepańczyk;I. Bartos;M. Campanelli;S. Klimenko;C. Lousto;R. O’Shaughnessy
- 通讯作者:V. Gayathri;J. Healy;J. Lange;B. O'Brien;M. Szczepańczyk;I. Bartos;M. Campanelli;S. Klimenko;C. Lousto;R. O’Shaughnessy
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Manuela Campanelli其他文献
突発的重力波カタログ2(GWTC-2)と重力波物理学
引力波目录 2 (GWTC-2) 和引力波物理学
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Hiroyuki Nakano;Brennan Ireland;Manuela Campanelli;Eric J. West;中野寛之 - 通讯作者:
中野寛之
Spinning, Precessing, Black Hole Binary Spacetime via Asymptotic Matching
通过渐近匹配的旋转、进动、黑洞二元时空
- DOI:
10.1088/0264-9381/33/24/247001 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Hiroyuki Nakano;Brennan Ireland;Manuela Campanelli;Eric J. West - 通讯作者:
Eric J. West
Multiband gravitational-wave astronomy: Observing binary inspirals
多波段引力波天文学:观测双星螺旋
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
中野寛之;Brennan Ireland;Ofek Birnholtz;Eric West;Manuela Campanelli;中野 寛之 - 通讯作者:
中野 寛之
Inspiralling, nonprecessing, spinning black hole binary spacetimevia asymptotic matching
通过渐近匹配的吸气、非进动、旋转黑洞二元时空
- DOI:
10.1103/physrevd.93.104057 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Brennan Ireland;Bruno C. Mundim;Hiroyuki Nakano;Manuela Campanelli - 通讯作者:
Manuela Campanelli
Inspiraling black-hole binary spacetimes: Challenges in transitioning from analytical to numerical techniques
鼓舞人心的黑洞二元时空:从分析技术过渡到数值技术的挑战
- DOI:
10.1103/physrevd.93.124072 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Yosef Zlochower;Hiroyuki Nakano;Bruno C. Mundim;Manuela Campanelli;Scott Noble;Miguel Zilhao - 通讯作者:
Miguel Zilhao
Manuela Campanelli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Manuela Campanelli', 18)}}的其他基金
Collaborative Research: Deploying Curvilinear Coordinate and Multipatch Methods on Neutron Star Mergers
合作研究:在中子星合并中部署曲线坐标和多面体方法
- 批准号:
2110338 - 财政年份:2021
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
WoU-MMA: Collaborative Research: Supermassive Binary Black Hole Mergers: Accretion Dynamics and Electromagnetic Output
WoU-MMA:合作研究:超大质量双黑洞合并:吸积动力学和电磁输出
- 批准号:
2009330 - 财政年份:2020
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Supermassive Black Holes Approaching Merger: Accretion Dynamics, Jets and Electromagnetic Signals
即将合并的超大质量黑洞:吸积动力学、喷流和电磁信号
- 批准号:
2031744 - 财政年份:2020
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Collaborative Research: Photons from Binary Black Hole Inspirals
合作研究:来自二元黑洞螺旋的光子
- 批准号:
1811228 - 财政年份:2018
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
MRI: Acquisition of a Computing Cluster for Gravitational-Wave and Multimessenger Astrophysics in the Era of LIGO Detections
MRI:在 LIGO 探测时代获取用于引力波和多信使天体物理的计算集群
- 批准号:
1726215 - 财政年份:2017
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Collaborative Research: Curvilinear and Multipatch Methods for General Relativistic Astrophysics in the Gravitational Wave Era
合作研究:引力波时代广义相对论天体物理学的曲线和多面体方法
- 批准号:
1707946 - 财政年份:2017
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
SI2-SSI: Collaborative Research: Einstein Toolkit Community Integration and Data Exploration
SI2-SSI:协作研究:Einstein Toolkit 社区集成和数据探索
- 批准号:
1550436 - 财政年份:2016
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
Collaborative Research: Predicting the Transient Signals from Galactic Centers: Circumbinary Disks and Tidal Disruptions around Black Holes
合作研究:预测来自银河系中心的瞬态信号:环形盘和黑洞周围的潮汐扰动
- 批准号:
1516125 - 财政年份:2015
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Collaborative Research: Accretion Dynamics of Black Hole Mergers
合作研究:黑洞合并的吸积动力学
- 批准号:
1516150 - 财政年份:2015
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
MRI: Acquisition of an Advanced Computing Cluster for General Relativistic Astrophysics
MRI:获取用于广义相对论天体物理学的高级计算集群
- 批准号:
1229173 - 财政年份:2012
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
相似海外基金
MRI: Track 1 Acquisition of a High-Performance Computing System at New Mexico Tech
MRI:新墨西哥理工学院高性能计算系统的第一轨道采购
- 批准号:
2320162 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Equipment: MRI: Track 2 Acquisition of a High-Performance Computing Cluster for Boosting Artificial Intelligence Enabled Science, Engineering, and Education in South Carolina
设备: MRI:第二轨道收购高性能计算集群,以促进南卡罗来纳州人工智能支持的科学、工程和教育
- 批准号:
2320292 - 财政年份:2023
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
MRI: Track 1 Acquisition of an HPC Cluster for Artificial Intelligence, Machine Learning, Scientific Computing, and Interdisciplinary Research
MRI:第一轨道收购用于人工智能、机器学习、科学计算和跨学科研究的 HPC 集群
- 批准号:
2320735 - 财政年份:2023
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Equipment: MRI: Track 1 Acquisition of Current Hardware to Enhance Computational Research on the ELSA High Performance Computing Cluster at The College of New Jersey
设备: MRI:第一轨道采购当前硬件,以增强新泽西学院 ELSA 高性能计算集群的计算研究
- 批准号:
2320244 - 财政年份:2023
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Equipment: MRI: Track 1 Acquisition of a GPU-Accelerated Computing Cluster for Advanced Optimization and Design in Multidisciplinary Research and Education
设备:MRI:Track 1 获取 GPU 加速计算集群,用于多学科研究和教育中的高级优化和设计
- 批准号:
2320649 - 财政年份:2023
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
MRI: Acquisition of a high-performance computing resource to enhance research and undergraduate education at the College of Staten Island
MRI:收购高性能计算资源以加强史坦顿岛学院的研究和本科教育
- 批准号:
2215760 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
MRI: Acquisition of a High-Performance Computational System for OAK Region to Enable Computing and Data Driven Discovery
MRI:为 OAK 地区采购高性能计算系统,以实现计算和数据驱动的发现
- 批准号:
2216084 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
MRI: Acquisition of High-Performance Computing Cluster for Research in Engineering, Science, and Technology
MRI:收购高性能计算集群用于工程、科学和技术研究
- 批准号:
2216335 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
MRI: Acquisition of a GPU-based High Performance Computing Instrumentation for Smart City Research at Cleveland State University
MRI:克利夫兰州立大学为智能城市研究采购基于 GPU 的高性能计算仪器
- 批准号:
2215388 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
MRI: Acquisition of a Heterogeneous High-Performance Computing Cluster Driven by Computational and Data-Intensive Multidisciplinary Research
MRI:获取由计算和数据密集型多学科研究驱动的异构高性能计算集群
- 批准号:
2216311 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
Standard Grant