Current-modulated Electrohydrodynamic (EHD) Jet Printing with Dual-channel Nozzles for Micro/Nano-Fabrication

用于微/纳米制造的双通道喷嘴电流调制电流体动力 (EHD) 喷射打印

基本信息

  • 批准号:
    1726627
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Inkjet printing as an additive fabrication method has been used in the manufacturing of printed electronics, 3-D object prototypes, solar cells, and light-emitting devices, as well as applications in tissue engineering and other biological and pharmaceutical fields. Unlike the more common method of piezo inkjet printing, which typically generates individual droplets of 10-50 micrometers in diameter, voltage-modulated electrohydrodynamic (EHD) jet printing has a demonstrated ability to produce sub-micrometer-sized droplets/fibers for the fabrication of patterns or features at nanometer scales. However, EHD jet printing has not been considered as a viable manufacturing tool because of the issues of nozzle clogging, ink accumulation at the nozzle exit, and low printing frequencies (resulting in a limited production rate). This project conducts fundamental research on a new form of EHD jet printing, using novel dual-channel printing nozzles and electrical current (instead of voltage) modulation. It is hypothesized that the circulation of liquid ink in the dual channels will eliminate nozzle clogging due to evaporation of carrier fluids or polymerization of ink, and the current modulation/control will enable high-speed, drop-on-demand EHD jet printing. This research could also lead to further improvements on current inkjet printing processes or devices in both industrial and household settings. Furthermore, the technique will be used in education and outreach activities geared toward students (at all levels) and workers in advanced manufacturing.This project will investigate the fundamental science involved in a new current-modulated, drop-on-demand EHD printing method with novel dual-channel nozzles for the fabrication of high-resolution micro/nano patterns at high jetting frequencies (on the level of MHz). The proposed dual-channel printing nozzles use two concentric tubes, providing an annular channel around the inner tube. In the proposed nozzle configuration, one channel provides new ink and the other for extracts ink from the nozzle, thereby achieving fluid circulation within the dual tube nozzle. It is hypothesized that this fluid circulation will eliminate or greatly reduce the issues of nozzle clogging and ink accumulation associated with polymerization or carrier fluid evaporation at the nozzle outlet.  This project further hypothesizes that the ejection rate of droplets can be increased through current control, instead of the voltage control commonly used. Scientific understanding of fluid meniscus dynamics and droplet generation in the proposed EHD printing will be required to achieve robust current control, and needs to incorporate effects of fluid recirculaiton. The novelties of the proposed EHD jet printing technique are i) the proposed dual-channel nozzles that will resolve the technical issues often encountered in single-capillary inkjet printing; and ii) the modulation of frequencies with current rather than voltage in order to achieve reliable EHD jet printing at high jetting frequencies. The specific aims of this project are to: i) develop the fundamental science involved in liquid meniscus formation, jetting, and droplet ejection in a voltage-modulated EHD jet printing process with the dual-channel nozzles; ii) investigate the fundamental jetting mechanisms in current-modulated EHD jet printing process (particularly at high frequencies); iii) numerically model the jetting characteristics in the EHD jet printing technique to develop the underlying fundamental science and aide control strategies; and iv) provide a proof-of-concept of the proposed approach and validate the numerical models through parametric investigations of the quality (i.e. the size, uniformity, and resolution) of micro/nano-sized patterns created.
喷墨打印作为一种增材制造方法已用于制造印刷电子产品、3D物体原型、太阳能电池和发光器件,以及应用于组织工程和其他生物和制药领域。与通常产生直径为10-50微米的单个液滴的更常见的压电喷墨印刷方法不同,电压调制电流体动力学(EHD)喷射印刷具有产生亚微米尺寸的液滴/纤维以用于制造纳米尺度的图案或特征的经证实的能力。然而,由于喷嘴堵塞、喷嘴出口处的油墨积聚和低打印频率(导致有限的生产率)的问题,EHD喷射打印尚未被认为是可行的制造工具。该项目对一种新形式的EHD喷射打印进行基础研究,使用新颖的双通道打印喷嘴和电流(而不是电压)调制。假设液体墨水在双通道中的循环将消除由于载液蒸发或墨水聚合而导致的喷嘴堵塞,并且当前的调制/控制将实现高速、按需滴墨的EHD喷射打印。这项研究也可能导致进一步改善目前的喷墨打印工艺或设备在工业和家庭环境。此外,该技术将用于面向学生的教育和推广活动(各级)和先进制造业的工人。本项目将研究一种新的电流调制,用于在高喷射频率下制造高分辨率微/纳米图案的具有新型双通道喷嘴的按需滴液EHD印刷方法所提出的双通道打印喷嘴使用两个同心管,提供围绕内管的环形通道。在所提出的喷嘴构造中,一个通道提供新的油墨,另一个通道用于从喷嘴提取油墨,从而实现双管喷嘴内的流体循环。假设这种流体循环将消除或大大减少与喷嘴出口处的聚合或载体流体蒸发相关联的喷嘴堵塞和油墨积聚的问题。 该项目进一步假设液滴的喷射速率可以通过电流控制而不是通常使用的电压控制来增加。在所提出的EHD打印中,将需要对流体弯月面动力学和液滴生成的科学理解,以实现强大的电流控制,并且需要将流体再循环的影响纳入其中。所提出的EHD喷射印刷技术的新颖性是i)所提出的双通道喷嘴,其将解决在单毛细管喷墨印刷中经常遇到的技术问题;以及ii)用电流而不是电压调制频率,以便在高喷射频率下实现可靠的EHD喷射印刷。本计画的主要目的为:i)发展双通道喷嘴电压调变电流体喷射印刷过程中液体弯月面形成、喷射及液滴喷射的基础科学; ii)研究电流调变电流体喷射印刷过程中的基本喷射机制iii)对EHD喷射印刷技术中的喷射特性进行数字建模,以开发基础科学和辅助控制策略;以及iv)提供所提出的方法的概念验证,并且通过对所创建的微米/纳米尺寸图案的质量(即,尺寸、均匀性和分辨率)的参数调查来验证数值模型。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ink bridge control in the electrohydrodynamic printing with a coaxial nozzle
  • DOI:
    10.1016/j.jmapro.2020.10.057
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Zhen Li;K. N. Al-Milaji;Hong Zhao;Da-Ren Chen
  • 通讯作者:
    Zhen Li;K. N. Al-Milaji;Hong Zhao;Da-Ren Chen
Electrohydrodynamic (EHD) jet printing with a circulating dual-channel nozzle
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daren Chen其他文献

A fuzzy extended PI observer for state of charge estimation of LiFePOsub4/sub batteries across broad temperature ranges
一种用于磷酸铁锂(LiFePO₄)电池在宽温度范围内荷电状态估计的模糊扩展比例积分观测器
  • DOI:
    10.1016/j.est.2025.116964
  • 发表时间:
    2025-08-30
  • 期刊:
  • 影响因子:
    9.800
  • 作者:
    Daren Chen;Li Sun;Fukang Shen;Guangxin Gao;Yunjiang Lou;Guangzhong Dong
  • 通讯作者:
    Guangzhong Dong
EUS DIRECTED RETROPERITONEAL ENDOSCOPY (A PORCINE MODEL)
超声内镜引导的腹膜后内镜检查(猪模型)
  • DOI:
    10.1016/j.gie.2022.04.1204
  • 发表时间:
    2022-06-01
  • 期刊:
  • 影响因子:
    7.500
  • 作者:
    Anil Vegesna;Larry S. Miller;Jamie L. Huot;Anita H. Nguyen;Daren Chen;Joel Zachariah
  • 通讯作者:
    Joel Zachariah
Generalised homomorphisms, measuring coalgebras and extended symmetries
广义同态、测量余代数和扩展对称性
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marjorie Batchelor;William Boulton;Daren Chen;J. Rawlinson;M. Warsi
  • 通讯作者:
    M. Warsi
Su1099 - Distensibility of the Gastroesophageal Junction Highpressure Zone in Non-Gerd Subjects Pre and Post Atropine and in Patients with Gerd
  • DOI:
    10.1016/s0016-5085(18)31855-9
  • 发表时间:
    2018-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Anil Vegesna;Daren Chen;Barry P. McMahon;Petros C. Benias;Anjali Pillai;Larry S. Miller
  • 通讯作者:
    Larry S. Miller
Indoor Allergen Surface Sampling Methods and Standards: A Review of the Theory and the Practice
室内过敏原表面采样方法和标准:理论与实践回顾
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Lewis;Daren Chen
  • 通讯作者:
    Daren Chen

Daren Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daren Chen', 18)}}的其他基金

MRI: Acquisition of Aerodyne High-Resolution, Time-of-Flight Aerosol Mass Spectrometer
MRI:购买 Aerodyne 高分辨率飞行时间气溶胶质谱仪
  • 批准号:
    0722811
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NIRT: Synthesis and Application of Magnetic Nano- and Nano-Composite Particles
NIRT:磁性纳米及纳米复合粒子的合成及应用
  • 批准号:
    0304649
  • 财政年份:
    2003
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Compositionally and Structurally Modulated Ferroelastic Films for Unprecedented Superelastic Properties
合作研究:成分和结构调制的铁弹性薄膜,具有前所未有的超弹性特性
  • 批准号:
    2333551
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: Compositionally and Structurally Modulated Ferroelastic Films for Unprecedented Superelastic Properties
合作研究:成分和结构调制的铁弹性薄膜,具有前所未有的超弹性特性
  • 批准号:
    2333552
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Dually modulated photonic-crystal surface-emitting lasers generationg various beam patterns
双调制光子晶体表面发射激光器产生各种光束图案
  • 批准号:
    23K13679
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Electrically Modulated Near-field Thermophotonics with Metal-Oxide-Semiconductor Nanostructures
合作研究:金属氧化物半导体纳米结构的电调制近场热光子学
  • 批准号:
    2309663
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Arrhythmia Mechanisms Modulated by Intercalated Disc Extracellular Nanodomains
闰盘细胞外纳米结构域调节心律失常的机制
  • 批准号:
    10668025
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Sensory characteristics and evaluation index of amplitude-modulated low-frequency sound in wind turbine noise
风电机组噪声中调幅低频声的感官特征及评价指标
  • 批准号:
    23K04149
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidating How Brain Function and Structure Are Modulated in Diverse Social Contexts
阐明大脑功能和结构在不同社会背景下如何调节
  • 批准号:
    23KJ2180
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Improving the Safety and Quality of Eye Plaque Brachytherapy by Assembly with Intensity Modulated Loading
通过调强加载组装提高眼斑近距离治疗的安全性和质量
  • 批准号:
    10579754
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Development of a prototype clinical theranostic platform combining Magnetic Particle Imaging (MPI) and Magnetic Fluid Hyperthermia (MFH) for the treatment of brain tumors
开发结合磁粒子成像(MPI)和磁流体热疗(MFH)的原型临床治疗平台,用于治疗脑肿瘤
  • 批准号:
    10761630
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Analysis of the signals modulated by serotonin in a C. elegans neural circuit
线虫神经回路中血清素调节的信号分析
  • 批准号:
    10602839
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了