Collaborative Research: Electrically Modulated Near-field Thermophotonics with Metal-Oxide-Semiconductor Nanostructures
合作研究:金属氧化物半导体纳米结构的电调制近场热光子学
基本信息
- 批准号:2309663
- 负责人:
- 金额:$ 25.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-11-01 至 2026-10-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Collaborative Research: Electrically Modulated Near-field Thermophotonics with Metal-Oxide-Semiconductor Nanostructures Thermophotonics is crucial to heat-to-power conversion, non-contact thermal management, thermal imaging, and laser manufacturing, where dynamically tunable thermal emission or absorption are highly desired with great controllability and versatility. We aim to employ metal-oxide-semiconductor (MOS) nanostructures to achieve significant modulation of radiative heat transfer via electrical tuning with heat flux exceeding the far-field blackbody limit. The success of this project would ultimately lead to novel applications of tunable thermoelectric conversion, heat control, thermal circuits with thermophotonic means. The research outcomes will be quickly disseminated through journal publications, conference presentations and course teaching. The PIs will train the next generation of workforce with an emphasis on broader participation of underrepresented groups such as female and minority students. Graduate students will learn the fundamentals of multiple disciplines, which will well prepare them for solving future energy challenges in engineering communities. The undergraduate research programs at ASU and UA offer a great opportunity for undergraduate students to participate in the research activities in the PIs’ labs. The PIs will engage local K-12 students through various outreaching programs at ASU and UA, aiming to spark their interests in STEM. It is known that the capacitance of planar MOS structures varies with the gate voltage which causes depletion or accumulation of free charge carriers within the semiconductor, but it occurs only in the ultrathin active region very close to the oxide interface on the order of ~10 nm approximated by the Debye length. With the infrared penetration depth of planar semiconductor on the order of micrometers, the absorption variation within such ultrathin active region could barely cause appreciable modulation absorption/emission within the whole structure. The proposed near-field MOS nanostructure would overcome this challenge by utilizing a fin field-effect transistor with the wrap-around ultrathin metal electrode and oxide gate layers as well as near-field effect. The carrier concentration of the semiconductor nanostructures whose diameter is about several tens of nanometers will change significantly with depletion or accumulation upon electrical gating. The drastically varied dielectric functions of the nanostructure layer will lead to electrically modulated near-field radiative heat transfer. By placing the MOS nanostructure in close proximity to an emitting surface with nanometric gap distances, the near-field effect with coupled evanescent waves could occur to enhance the radiative energy significantly surpassing the far-field blackbody limit. The proposed research project will be carried out with a combination of theoretical and experimental tasks including design and theoretical modeling, sample fabrication and characterization, near-field measurements and metrology development, as well as validation and optimization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
热光子学对热-功率转换、非接触式热管理、热成像和激光制造至关重要,在这些领域,动态可调的热发射或热吸收是非常需要的,具有很强的可控性和多功能性。我们的目标是利用金属氧化物半导体(MOS)纳米结构来实现热流超过远场黑体极限的电调谐对辐射传热的显著调制。该项目的成功将最终导致可调热电转换,热控制,热电路与热光子手段的新应用。研究成果将通过期刊出版物、会议报告和课程教学迅速传播。ppi将培训下一代劳动力,重点是让女性和少数族裔学生等代表性不足的群体更广泛地参与进来。研究生将学习多学科的基础知识,这将为他们解决未来工程领域的能源挑战做好准备。亚利桑那州立大学和亚利桑那大学的本科生研究项目为本科生提供了参与pi实验室研究活动的绝佳机会。这些pi将通过亚利桑那州立大学和亚利桑那大学的各种外展项目吸引当地K-12学生,旨在激发他们对STEM的兴趣。已知平面MOS结构的电容随栅极电压的变化而变化,导致半导体内自由载流子的耗尽或积累,但这种变化只发生在非常靠近氧化物界面的超薄活性区,约为10 nm(德拜长度)。当平面半导体的红外穿透深度在微米量级时,这种超薄有源区域内的吸收变化几乎不能引起整个结构内明显的调制吸收/发射。所提出的近场MOS纳米结构将通过利用带有包裹超薄金属电极和氧化栅极层的翅片场效应晶体管以及近场效应来克服这一挑战。在直径为几十纳米的半导体纳米结构中,载流子浓度会随着电栅的损耗或积累而发生显著变化。纳米结构层介电函数的剧烈变化将导致电调制的近场辐射传热。通过将MOS纳米结构放置在具有纳米间隙距离的发射表面附近,可以产生耦合倏逝波的近场效应,从而显著提高辐射能量,超过远场黑体极限。拟议的研究项目将结合理论和实验任务进行,包括设计和理论建模,样品制造和表征,近场测量和计量发展,以及验证和优化。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liping Wang其他文献
Thermal Percolation of Antiperovskite Superionic Conductor into Porous MXene Scaffold for High‐Capacity and Stable Lithium Metal Battery
反钙钛矿超离子导体热渗透到多孔 MXene 支架中用于高容量和稳定的锂金属电池
- DOI:
10.1002/smtd.202200980 - 发表时间:
2022-10 - 期刊:
- 影响因子:12.4
- 作者:
Yang Li;Long Kong;Haochen Yang;Shuai Li;Zhi Deng;Shuo Li;Liping Wang;Jim Yang Lee;Yusheng Zhao;Po‐Yen Chen - 通讯作者:
Po‐Yen Chen
Modulation of Innate Defensive Responses by Locus Coeruleus-Superior Colliculus Circuit
蓝斑-上丘回路对先天防御反应的调节
- DOI:
10.1177/1179069518792035 - 发表时间:
2018-08 - 期刊:
- 影响因子:0
- 作者:
Lei Li;Liping Wang - 通讯作者:
Liping Wang
Preparation of mercury ions absorbent from filter paper by surface sol-gel process and functionalized monolayers treatment
表面溶胶-凝胶法及功能化单分子膜处理滤纸制备汞离子吸收剂
- DOI:
10.1109/iswrep.2011.5893560 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Kunrong Lai;Wei Wang;Liping Wang - 通讯作者:
Liping Wang
Tribocorrosion behaviors of multilayer PVD DLC coated 304L stainless steel in seawater
多层PVD DLC涂层304L不锈钢在海水中的摩擦腐蚀行为
- DOI:
10.1016/j.diamond.2017.09.002 - 发表时间:
2017-10 - 期刊:
- 影响因子:4.1
- 作者:
Yuwei Ye;Yongxin Wang;Xinli Ma;Dawei Zhang;Liping Wang;Xiaogang Li - 通讯作者:
Xiaogang Li
SCID-hu Thy / Liv Mice : Evidence of Indirect Immature Thymocytes in HIV-1-Infected Induction of MHC Class I Expression on Kaneshima and Lishan
SCID-hu Thy / Liv 小鼠:HIV-1 感染的间接未成熟胸腺细胞诱导 Kaneshima 和 Lishan 上 MHC I 类表达的证据
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
G. Kovalev;K. Duus;Liping Wang;R. Lee;M. Bonyhadi;D. Ho;J. McCune;H. Kaneshima;L. Su - 通讯作者:
L. Su
Liping Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liping Wang', 18)}}的其他基金
REU Site: Controlled Environment Agriculture (CEAfREU)
REU 站点:受控环境农业 (CEAfREU)
- 批准号:
2349765 - 财政年份:2024
- 资助金额:
$ 25.2万 - 项目类别:
Standard Grant
Tunable Super-Planckian Near-field Radiative Heat Transfer with Thermochromic Metamaterials
使用热致变色超材料的可调谐超普朗克近场辐射传热
- 批准号:
2212342 - 财政年份:2022
- 资助金额:
$ 25.2万 - 项目类别:
Standard Grant
RII Track-4: Adaptive Fault Detection and Diagnosis Based on Growing Gaussian Mixture Regressions for High-Performance HVAC Systems
RII Track-4:高性能 HVAC 系统基于增长高斯混合回归的自适应故障检测和诊断
- 批准号:
1929209 - 财政年份:2020
- 资助金额:
$ 25.2万 - 项目类别:
Standard Grant
CAREER: Commercial Building Indoor Greenery Systems' Effects on Thermal Environment and Occupant Comfort under Climate Change
职业:气候变化下商业建筑室内绿化系统对热环境和居住者舒适度的影响
- 批准号:
1944823 - 财政年份:2020
- 资助金额:
$ 25.2万 - 项目类别:
Continuing Grant
CAREER: Coherent Understanding of Magnetic Resonance in Controlling Radiative Transport from Far to Near Field
职业:对磁共振控制从远场到近场的辐射传输的连贯理解
- 批准号:
1454698 - 财政年份:2015
- 资助金额:
$ 25.2万 - 项目类别:
Standard Grant
STTR Phase I: A Gas-Solid Spouted Bed Bioreactor for Solid State Fermentation to Produce Enzymes and Biochemicals from Plant Biomass
STTR 第一阶段:气固喷动床生物反应器,用于固态发酵,从植物生物质中生产酶和生物化学品
- 批准号:
0611075 - 财政年份:2006
- 资助金额:
$ 25.2万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CDS&E: Computational Exploration of Electrically Conductive Metal-Organic Frameworks as Cathode Materials in Lithium-Sulfur Batteries
合作研究:CDS
- 批准号:
2302618 - 财政年份:2023
- 资助金额:
$ 25.2万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Computational Exploration of Electrically Conductive Metal-Organic Frameworks as Cathode Materials in Lithium-Sulfur Batteries
合作研究:CDS
- 批准号:
2302617 - 财政年份:2023
- 资助金额:
$ 25.2万 - 项目类别:
Standard Grant
Collaborative Research: Electrically Modulated Near-field Thermophotonics with Metal-Oxide-Semiconductor Nanostructures
合作研究:金属氧化物半导体纳米结构的电调制近场热光子学
- 批准号:
2309664 - 财政年份:2023
- 资助金额:
$ 25.2万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Electrically Pumped Monolithic Bi-photon emitters
EAGER:合作研究:电泵浦单片双光子发射器
- 批准号:
2135088 - 财政年份:2021
- 资助金额:
$ 25.2万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Electrically Pumped Monolithic Bi-photon emitters
EAGER:合作研究:电泵浦单片双光子发射器
- 批准号:
2135083 - 财政年份:2021
- 资助金额:
$ 25.2万 - 项目类别:
Standard Grant
SemiSynBio: Collaborative Research: DNA-based Electrically Readable Memories
SemiSynBio:合作研究:基于 DNA 的电可读存储器
- 批准号:
1807568 - 财政年份:2018
- 资助金额:
$ 25.2万 - 项目类别:
Continuing Grant
SemiSynBio: Collaborative Research: DNA-based Electrically Readable Memories
SemiSynBio:合作研究:基于 DNA 的电可读存储器
- 批准号:
1807391 - 财政年份:2018
- 资助金额:
$ 25.2万 - 项目类别:
Continuing Grant
SemiSynBio: Collaborative Research: DNA-based Electrically Readable Memories
SemiSynBio:合作研究:基于 DNA 的电可读存储器
- 批准号:
1807555 - 财政年份:2018
- 资助金额:
$ 25.2万 - 项目类别:
Continuing Grant
GOALI/Collaborative Research: Electrically-Enhanced Precision MicroRolling
GOALI/合作研究:电动增强精密微滚动
- 批准号:
1560628 - 财政年份:2015
- 资助金额:
$ 25.2万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Electrically-Enhanced Precision MicroRolling
GOALI/合作研究:电动增强精密微滚动
- 批准号:
1100507 - 财政年份:2011
- 资助金额:
$ 25.2万 - 项目类别:
Standard Grant