Mixing Elastic Waves to Nondestructively Characterize Microstructure During Additive Manufacturing of Metals

在金属增材制造过程中混合弹性波以无损表征微观结构

基本信息

  • 批准号:
    1727292
  • 负责人:
  • 金额:
    $ 35.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Additive manufacturing (AM) is a revolutionary way to directly form structural components. It is transforming the manufacturing industry, however quality assurance testing of safety critical components is creating a bottleneck in advancement of the state of the art. The complex physics involved in the solidification of metal parts results in nonuniformities across multiple length scales. Many non-uniformities, such as voids and lack of fusion, are detectable in off-line, x-ray based, computed tomography (CT) scans, but others, occurring at the micro-scale, are still difficult to quantify. Currently there is no nondestructive method capable of estimating material strength properties and build quality during the actual manufacturing process. Elastic wave propagation through the material, which is indicative of the material's elastic properties, will be used to address this short coming. This work researches how to effectively use laser induced thermal stresses to generate the elastic waves in the material surface layers, and how to extract material properties from the measured wave propagation. By using a noncontact laser source, the technique can be integrated into the manufacturing environment to characterize material as it is formed on a layer-by-layer basis. This information will be leveraged to provide quality assurance testing and feedback into closed loop process control and to clear the bottleneck in commercializing AM for safety critical components. This innovation, training of students, and outreach to teachers as part of this project will help the United States maintain a leadership role in manufacturing. No current technology is capable of interrogating the microstructure of material during additive manufacturing (AM). However, nonlinear ultrasonics has the capability to nondestructively characterize the features of material microstructure that dictate strength. While the contact transducers customary for nonlinear ultrasonics are not appropriate for the AM environment, laser actuation and reception of ultrasound is tractable, thus nonlinear laser ultrasonics is suggested as the solution. The research objective of this project is to correlate the interaction of elastic waves with material microstructure within an AM environment. To achieve this objective, the hypothesis that Rayleigh surface waves generated by a pulsed laser and propagating in a metal part during layer-by-layer deposition mix together according to the principle of superposition will have to be falsified. A dual slit mask/lens assembly will be researched with the aim of actuating Rayleigh waves at two dominant frequencies. Nonlinear mixing of these Rayleigh waves will generate sum and difference harmonics. By falsifying the hypothesis, the interaction of elastic surface waves will be proven to be a viable method for nondestructive material characterization during AM. The research will lead to understanding how to describe material nonlinearity in terms of the mutual interaction of Rayleigh waves and provide a correlation between sum/difference combinational harmonics and the strength-related material nonlinearity causing them.
增材制造(AM)是直接形成结构部件的革命性方法。它正在改变制造业,但安全关键部件的质量保证测试正在成为技术进步的瓶颈。金属部件凝固过程中涉及的复杂物理过程导致多个长度尺度上的不均匀性。许多非均匀性,如空洞和缺乏融合,是可检测的离线,基于X射线,计算机断层扫描(CT)扫描,但其他的,发生在微观尺度,仍然难以量化。 目前还没有能够在实际制造过程中估计材料强度特性和构建质量的非破坏性方法。通过材料的弹性波传播,这是材料的弹性性能的指示,将被用来解决这个缺点。本文研究了如何有效地利用激光诱导热应力在材料表层产生弹性波,以及如何从测量的波传播中提取材料特性。通过使用非接触式激光源,该技术可以集成到制造环境中,以在逐层形成时表征材料。这些信息将被用于提供质量保证测试和反馈到闭环过程控制中,并清除AM商业化的瓶颈。作为该项目的一部分,这种创新、学生培训和教师推广将有助于美国在制造业中保持领导地位。目前没有技术能够在增材制造(AM)期间询问材料的微观结构。然而,非线性超声具有非破坏性地表征决定强度的材料微观结构特征的能力。虽然非线性超声常用的接触式换能器不适用于AM环境,但超声的激光激励和接收是易于处理的,因此建议将非线性激光超声作为解决方案。本计画的研究目标是在AM环境中,将弹性波与材料微结构的相互作用关联起来。为了实现这一目标,假设瑞利表面波产生的脉冲激光和传播的金属零件在逐层沉积混合在一起,根据叠加原理将不得不被证伪。双缝掩模/透镜组件将被研究,其目的是在两个主频率下激励瑞利波。这些瑞利波的非线性混合将产生和差谐波。通过证伪这一假设,弹性表面波的相互作用将被证明是一种可行的方法,无损材料表征AM。该研究将有助于了解如何根据Rayleigh波的相互作用来描述材料非线性,并提供和/差组合谐波与引起它们的强度相关材料非线性之间的相关性。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Influence of surface roughness from additive manufacturing on laser ultrasonics measurements
增材制造表面粗糙度对激光超声波测量的影响
  • DOI:
    10.1063/1.5099713
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bakre, Chaitanya;Hassanian, Mostafa;Lissenden, Cliff
  • 通讯作者:
    Lissenden, Cliff
Second order ultrasonic guided wave mutual interactions in plate: Arbitrary angles, internal resonance, and finite interaction region
  • DOI:
    10.1063/1.5048227
  • 发表时间:
    2018-10-28
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Hasanian, Mostafa;Lissenden, Cliff J.
  • 通讯作者:
    Lissenden, Cliff J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cliff Lissenden其他文献

Cliff Lissenden的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cliff Lissenden', 18)}}的其他基金

Higher Harmonic Ultrasonic Guided Waves for Structural Integrity Assessment of Infrastructure
用于基础设施结构完整性评估的高次谐波超声导波
  • 批准号:
    1300562
  • 财政年份:
    2013
  • 资助金额:
    $ 35.8万
  • 项目类别:
    Standard Grant
Continuous Piezoelectric Health Monitoring Systems Based on Ultrasonic Guided Waves
基于超声波导波的连续压电健康监测系统
  • 批准号:
    0900284
  • 财政年份:
    2009
  • 资助金额:
    $ 35.8万
  • 项目类别:
    Standard Grant
Design in Mechanics of Materials Courses for Deeper Learning
深入学习的材料力学课程设计
  • 批准号:
    0633602
  • 财政年份:
    2007
  • 资助金额:
    $ 35.8万
  • 项目类别:
    Standard Grant
CAREER: Plastic Flow in Reinforced Metals Subjected to Multiaxial Loading
职业:多轴载荷下增强金属中的塑性流动
  • 批准号:
    9875414
  • 财政年份:
    1999
  • 资助金额:
    $ 35.8万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: New Polarizations of Elastic Waves in Architected Materials
职业:建筑材料中弹性波的新极化
  • 批准号:
    2341003
  • 财政年份:
    2024
  • 资助金额:
    $ 35.8万
  • 项目类别:
    Standard Grant
CAREER: Guiding and Confining Nonlinear Elastic Waves in Moiré Metastructures
职业:在莫尔超结构中引导和限制非线性弹性波
  • 批准号:
    2238072
  • 财政年份:
    2023
  • 资助金额:
    $ 35.8万
  • 项目类别:
    Standard Grant
Nonlinear Elastic Waves in Passive and Active Periodic Media
无源和有源周期性介质中的非线性弹性波
  • 批准号:
    RGPIN-2020-06814
  • 财政年份:
    2022
  • 资助金额:
    $ 35.8万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear Bulk and Interfacial Waves in Fiber-Reinforced Elastic Solids
纤维增强弹性固体中的非线性体波和界面波
  • 批准号:
    564738-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 35.8万
  • 项目类别:
    University Undergraduate Student Research Awards
Nonlinear Elastic Waves in Passive and Active Periodic Media
无源和有源周期性介质中的非线性弹性波
  • 批准号:
    RGPIN-2020-06814
  • 财政年份:
    2021
  • 资助金额:
    $ 35.8万
  • 项目类别:
    Discovery Grants Program - Individual
In-situ oil viscosity measurement via solid elastic waves
通过固体弹性波进行原位油粘度测量
  • 批准号:
    2602517
  • 财政年份:
    2021
  • 资助金额:
    $ 35.8万
  • 项目类别:
    Studentship
Guiding, Localizing and IMaging confined GHz acoustic waves in GaN Elastic waveguides and Resonators for monolithically integrated RF front-ends
用于单片集成射频前端的 GaN 弹性波导和谐振器中的有限 GHz 声波的引导、定位和成像
  • 批准号:
    EP/V005286/1
  • 财政年份:
    2021
  • 资助金额:
    $ 35.8万
  • 项目类别:
    Research Grant
Nonlinear Elastic Waves in Passive and Active Periodic Media
无源和有源周期性介质中的非线性弹性波
  • 批准号:
    RGPIN-2020-06814
  • 财政年份:
    2020
  • 资助金额:
    $ 35.8万
  • 项目类别:
    Discovery Grants Program - Individual
Scattering of elastic and acoustic waves for applications in industry
工业应用中的弹性波和声波散射
  • 批准号:
    2440143
  • 财政年份:
    2020
  • 资助金额:
    $ 35.8万
  • 项目类别:
    Studentship
Nonlinear Elastic Waves in Passive and Active Periodic Media
无源和有源周期性介质中的非线性弹性波
  • 批准号:
    DGECR-2020-00515
  • 财政年份:
    2020
  • 资助金额:
    $ 35.8万
  • 项目类别:
    Discovery Launch Supplement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了