Guiding, Localizing and IMaging confined GHz acoustic waves in GaN Elastic waveguides and Resonators for monolithically integrated RF front-ends
用于单片集成射频前端的 GaN 弹性波导和谐振器中的有限 GHz 声波的引导、定位和成像
基本信息
- 批准号:EP/V005286/1
- 负责人:
- 金额:$ 122.66万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
As smartphones become the dominant mechanism for information transfer and processing in modern society, our expectations on what we hope to achieve with them also increases proportionally. In particular, the smart phone has become our portal to the internet, replaced our television, radio and music devices, and also serves as our credit card and personal guide (GPS). We also expect our mobile phones to work seamlessly as we travel across international borders. All of this is enabled by the separation of the various functions into different wireless (RF) frequency bands, and the development of sophisticated analog and digital circuitry, that enables the phone to simultaneously carry out these communications. As we move towards 5G and other technologies that increase the data throughput available, these channels must increase. While on the digital signal processing side, the steady advance of Moore's law and microelectronic integration has enabled silicon technology to keep up with the demand, this is not the case for the RF front-end circuitry, which is primarily analog. The RF front-end circuit, receives the signal from the antenna and separates it into different channels (based on RF filters), amplifies it with a low noise amplifier (LNA) and then hands it over to the DSP for baseband signal processing. Currently, RF filters and LNAs are primarily discrete devices that are co-packaged together. While this hybrid approach has certain advantages (mainly the choice of piezoelectric materials for the filter), as demand for filters continuously rises, it is known that a co-packaging approach will not scale. The main reason is that the available smartphone footprint (in terms of chip area) for the RF front-end has remained roughly the same across generations, while the filtering demand has continuously increased. As the microelectronics industry has repeatedly taught us, monolithic integration is the only long-term solution to address these problems. In this project, we will demonstrate that gallium nitride (GaN) is the ideal platform for achieving monolithic integration by exploiting a key advantage that GaN provides over traditional solutions: acoustic waveguiding. GaN allows us to guide high-frequency sound on the surface of chip with low acoustic attenuation. By routing sound in nanoscale waveguides and localising it in micron-scale resonators, one can re-design RF system components from the ground up realizing a massive reduction in component footprint, which is key to enabling monolithic integration. By applying ideas from integrated photonics to high-frequency acoustics, we hope to realize for RF systems the same benefits (in terms of size, weight and performance) that silicon photonics has achieved for optical telecommunication systems. We will show that high quality RF passive devices (in particular, piezoelectric resonators and filters) can be built on the same GaN substrate as the active transistor devices. We will implement a process flow and design the associated process development kit to implement these ideas in commercial GaN RF foundries (for ex: the Newport wafer fab) in collaboration with our project partners.
随着智能手机成为现代社会信息传输和处理的主导机制,我们对智能手机的期望也在成比例地增加。特别是,智能手机已经成为我们的互联网门户,取代了我们的电视,收音机和音乐设备,也成为我们的信用卡和个人指南(GPS)。我们还希望我们的移动的手机在我们跨越国际边界旅行时能无缝地工作。所有这一切都是通过将各种功能分离到不同的无线(RF)频段以及开发复杂的模拟和数字电路来实现的,这些电路使手机能够同时进行这些通信。随着我们向5G和其他增加可用数据吞吐量的技术迈进,这些通道必须增加。虽然在数字信号处理方面,摩尔定律和微电子集成的稳步发展使硅技术能够跟上需求,但主要是模拟的RF前端电路并非如此。射频前端电路从天线接收信号,并将其分离到不同的通道(基于射频滤波器),用低噪声放大器(LNA)放大,然后将其交给DSP进行基带信号处理。目前,RF滤波器和LNA主要是共同封装在一起的分立器件。虽然这种混合方法具有某些优点(主要是用于滤波器的压电材料的选择),但是随着对滤波器的需求不断上升,已知共同封装方法不会扩展。主要原因是RF前端的可用智能手机占用面积(就芯片面积而言)在各代之间大致保持不变,而滤波需求不断增加。正如微电子行业一再告诉我们的那样,单片集成是解决这些问题的唯一长期解决方案。在这个项目中,我们将证明氮化镓(GaN)是实现单片集成的理想平台,通过利用GaN提供的传统解决方案的关键优势:声波波导。GaN使我们能够在芯片表面以低声衰减引导高频声音。通过在纳米级波导中路由声音并将其定位在微米级谐振器中,人们可以从头开始重新设计RF系统组件,从而大幅减少组件占用空间,这是实现单片集成的关键。通过将集成光子学的思想应用于高频声学,我们希望在RF系统中实现硅光子学在光通信系统中实现的相同优势(在尺寸,重量和性能方面)。我们将展示高质量的RF无源器件(特别是压电谐振器和滤波器)可以构建在与有源晶体管器件相同的GaN衬底上。我们将实施一个工艺流程并设计相关的工艺开发工具包,以便与我们的项目合作伙伴合作,在商业GaN RF代工厂(例如:纽波特晶圆厂)中实施这些想法。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Low-loss GHz frequency phononic integrated circuits in Gallium Nitride for compact radio-frequency acoustic wave devices.
用于紧凑型射频声波器件的低损耗 GHz 频率氮化镓声子集成电路。
- DOI:10.1109/tuffc.2023.3332146
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Bicer M
- 通讯作者:Bicer M
Gallium nitride phononic integrated circuits platform for GHz frequency acoustic wave devices
- DOI:10.1063/5.0082467
- 发表时间:2022-06-13
- 期刊:
- 影响因子:4
- 作者:Bicer, Mahmut;Valle, Stefano;C. Balram, Krishna
- 通讯作者:C. Balram, Krishna
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Krishna Coimbatore Balram其他文献
Krishna Coimbatore Balram的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Krishna Coimbatore Balram', 18)}}的其他基金
New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
- 批准号:
EP/Z000688/1 - 财政年份:2024
- 资助金额:
$ 122.66万 - 项目类别:
Research Grant
ECCS-EPSRC Micromechanical Elements for Photonic Reconfigurable Zero-Static-Power Modules
用于光子可重构零静态功率模块的 ECCS-EPSRC 微机械元件
- 批准号:
EP/X025381/1 - 财政年份:2024
- 资助金额:
$ 122.66万 - 项目类别:
Research Grant
Next generation Acoustic Wave Filter Platform
下一代声波滤波器平台
- 批准号:
EP/W035359/1 - 财政年份:2023
- 资助金额:
$ 122.66万 - 项目类别:
Research Grant
QC:SCALE - Quantum Circuits: Systematically Controlling And Linking Emitters for integrated solid state photonics platforms
QC:SCALE - 量子电路:系统地控制和链接集成固态光子平台的发射器
- 批准号:
EP/W006685/1 - 财政年份:2022
- 资助金额:
$ 122.66万 - 项目类别:
Research Grant
GASP: Gallium Arsenide (III-V) photonic integrated circuits built like Silicon Photonics
GASP:砷化镓 (III-V) 光子集成电路,类似于硅光子学
- 批准号:
EP/V052179/1 - 财政年份:2021
- 资助金额:
$ 122.66万 - 项目类别:
Research Grant
SCREAM: Synthesizing and Controlling Resonant Electric and Magnetic near fields using piezoelectric micro-resonators
SCREAM:使用压电微谐振器合成和控制谐振电和磁近场
- 批准号:
EP/V048856/1 - 财政年份:2021
- 资助金额:
$ 122.66万 - 项目类别:
Research Grant
相似海外基金
Collaborative Research: SaTC: CORE: Small: Detecting and Localizing Non-Functional Vulnerabilities in Machine Learning Libraries
协作研究:SaTC:核心:小型:检测和本地化机器学习库中的非功能性漏洞
- 批准号:
2230060 - 财政年份:2023
- 资助金额:
$ 122.66万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Detecting and Localizing Non-Functional Vulnerabilities in Machine Learning Libraries
协作研究:SaTC:核心:小型:检测和本地化机器学习库中的非功能性漏洞
- 批准号:
2230061 - 财政年份:2023
- 资助金额:
$ 122.66万 - 项目类别:
Standard Grant
Stochastic Deep Learning for Electronic Health Records: Localizing Learning with Massive and Fragmented Data
电子健康记录的随机深度学习:利用海量碎片数据进行本地化学习
- 批准号:
10793778 - 财政年份:2023
- 资助金额:
$ 122.66万 - 项目类别:
Significance of glycoconjugate remodeling by fish sialidase localizing at nucleus
位于细胞核的鱼类唾液酸酶对糖缀合物重塑的意义
- 批准号:
22H02436 - 财政年份:2022
- 资助金额:
$ 122.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Quantifying and localizing cross-frequency oscillation dynamics and connectivity across local and large-scale brain networks
量化和定位局部和大规模脑网络的交叉频率振荡动力学和连接性
- 批准号:
RGPIN-2018-06692 - 财政年份:2022
- 资助金额:
$ 122.66万 - 项目类别:
Discovery Grants Program - Individual
Localizing isoflavonoid pathway enzymes at a molecular level
在分子水平上定位异黄酮途径酶
- 批准号:
573588-2022 - 财政年份:2022
- 资助金额:
$ 122.66万 - 项目类别:
University Undergraduate Student Research Awards
Mechanism of targeting of Peroxisome-Mitochondria localizing proteins
过氧化物酶体-线粒体定位蛋白的靶向机制
- 批准号:
RGPIN-2020-05865 - 财政年份:2022
- 资助金额:
$ 122.66万 - 项目类别:
Discovery Grants Program - Individual
Quantifying and localizing cross-frequency oscillation dynamics and connectivity across local and large-scale brain networks
量化和定位局部和大规模脑网络的交叉频率振荡动力学和连接性
- 批准号:
RGPIN-2018-06692 - 财政年份:2021
- 资助金额:
$ 122.66万 - 项目类别:
Discovery Grants Program - Individual
Novel population-genetic methods for localizing targets of natural selection in diverse human genomes
用于在不同人类基因组中定位自然选择目标的新群体遗传学方法
- 批准号:
10321900 - 财政年份:2021
- 资助金额:
$ 122.66万 - 项目类别:
Non-invasive stand-off sensing for detecting, monitoring and localizing humans
用于检测、监控和定位人体的非侵入式远距离传感
- 批准号:
RGPIN-2016-06248 - 财政年份:2021
- 资助金额:
$ 122.66万 - 项目类别:
Discovery Grants Program - Individual