Modeling and Design of Enhanced Strength and Ductility Through Grain Boundary Engineering--A Study of Boron Carbide Based Superhard Materials
通过晶界工程增强强度和延展性的建模与设计--碳化硼基超硬材料的研究
基本信息
- 批准号:1727428
- 负责人:
- 金额:$ 47.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Strength refers to a material's ability to withstand failure or yield, while ductility is its ability to permanently deform without fracture. Many important engineering applications require high strength and yet ductile materials, such as in cutting tools, body armor for soldiers, and manufacturing process. One promising candidate is boron carbide, a so-called superhard ceramic names so because of its strength; however, it has low ductility. In poly-crystalline materials, the strength and ductility are commonly associated with microstructural features at the lower length scales (micrometers and below). There is a significant knowledge gap regarding the impact of microstructure on the strength and ductility of superhard ceramics. This project is directed towards the study of the physical mechanisms that underlie the relationships between microstructure, and strength and ductility of boron carbide based materials using computational modeling and simulations. The project will also establish design principles based on the knowledge gained for the development of new boron carbide based materials with enhanced strength and ductility. The design strategies will be extendable to a variety of other superhard materials, such as borides, carbides, and diamond. The research will be integrated into both undergraduate and graduate education, as well as outreach activities for local high school students. The research project will also target the participation of women and under-represented minority students in science, technology, engineering, and math disciplines. The research objective of this project is to illustrate how microstructure determines the deformation and mechanical processes in boron carbide based materials. The research team will apply a multiscale approach coupling atomistic modeling and the mesoscale phase field method to (1) investigate the impact of grain boundaries on mechanical properties, deformation, and failure mechanisms of boron carbide; and (2) establish the design principles to enhance the strength and ductility of boron carbide through engineering of grain boundary properties with microalloying. The research will make original contributions in elucidating the origins of the strength and ductility of polycrystalline superhard ceramics under realistic conditions. The materials design principles will be applied to inspire experimental synthesis of stronger and tougher boron carbide based materials for commercial applications.
强度是指材料承受失败或屈服的能力,而延展性是指其永久变形而不断裂的能力。许多重要的工程应用需要高强度和延展性的材料,例如在切割工具、士兵防弹衣和制造过程中。一个很有希望的候选者是碳化硼,一种所谓的超硬陶瓷,因为它的强度而得名;然而,它的延展性很低。在多晶材料中,强度和延展性通常与较低长度尺度(微米及以下)的微观结构特征有关。关于显微结构对超硬陶瓷的强度和延展性的影响,人们的认识差距很大。本项目旨在通过计算建模和模拟来研究碳化硼基材料微观结构与强度和塑性之间关系的物理机制。该项目还将建立基于所获得的知识的设计原则,以开发具有更高强度和延展性的新型碳化硼材料。设计策略将扩展到各种其他超硬材料,如硼化物、碳化物和钻石。这项研究将纳入本科生和研究生教育,以及针对当地高中生的外联活动。该研究项目还将针对女性和未被充分代表的少数民族学生参与科学、技术、工程和数学学科。本项目的研究目的是阐明显微组织如何决定碳化硼材料的变形和力学过程。研究小组将应用原子模拟和介观相场方法相结合的多尺度方法来(1)研究晶界对碳化硼的力学性能、变形和失效机制的影响;以及(2)建立通过微合金化的晶界性能工程来提高碳化硼的强度和塑性的设计原则。这项研究将为阐明多晶超硬陶瓷在现实条件下的强度和塑性的来源做出创新性的贡献。材料设计原则将被应用于启发更强、更韧的碳化硼基材料的实验合成,用于商业应用。
项目成果
期刊论文数量(31)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enhanced fracture toughness of boron carbide from microalloying and nanotwinning
- DOI:10.1016/j.scriptamat.2018.11.035
- 发表时间:2019-03
- 期刊:
- 影响因子:6
- 作者:Yidi Shen;Guodong Li;Q. An
- 通讯作者:Yidi Shen;Guodong Li;Q. An
Photomechanical effect leading to extraordinary ductility in covalent semiconductors
- DOI:10.1103/physrevb.100.094110
- 发表时间:2019-09
- 期刊:
- 影响因子:3.7
- 作者:Hongwei Wang;Shuangxi Song;Xinshu Zou;Fangxi Wang;Zhifu Zhang;S. Morozov;Xiaodong Wang;K. Reddy;Q. An
- 通讯作者:Hongwei Wang;Shuangxi Song;Xinshu Zou;Fangxi Wang;Zhifu Zhang;S. Morozov;Xiaodong Wang;K. Reddy;Q. An
Electron–Hole Excitation Induced Softening in Boron Carbide-Based Superhard Materials
碳化硼基超硬材料中电子空穴激发引起的软化
- DOI:10.1021/acsami.2c05528
- 发表时间:2022
- 期刊:
- 影响因子:9.5
- 作者:He, Yi;Shen, Yidi;Tang, Bin;An, Qi
- 通讯作者:An, Qi
Grain Boundary Sliding and Amorphization are Responsible for the Reverse Hall-Petch Relation in Superhard Nanocrystalline Boron Carbide
- DOI:10.1103/physrevlett.121.145504
- 发表时间:2018-10-04
- 期刊:
- 影响因子:8.6
- 作者:Guo, Dezhou;Song, Shuangxi;An, Qi
- 通讯作者:An, Qi
Graphite interface mediated grain-boundary sliding leads to enhanced mechanical properties of nanocrystalline silicon carbide
- DOI:10.1016/j.mtla.2019.100394
- 发表时间:2019-07
- 期刊:
- 影响因子:3.4
- 作者:K. Madhav Reddy;Dezhou Guo;Simanta Lahkar;Chun-Yang Cheng;Y. Shinoda;Q. An;Xiaodong Wang
- 通讯作者:K. Madhav Reddy;Dezhou Guo;Simanta Lahkar;Chun-Yang Cheng;Y. Shinoda;Q. An;Xiaodong Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qi An其他文献
Investigating the relationship between driver's sense of agency and EEG: Mu-rhythm is more suppressed in higher SoA case
调查驾驶员的代理感与脑电图之间的关系:在较高 SoA 情况下 Mu-rhythm 受到更多抑制
- DOI:
10.1109/mhs.2017.8305264 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Sonmin Yun;Wen Wen;Qi An;Shunsuke Hamasaki;Hiroshi Yamakawa;Y. Tamura;A. Yamashita;H. Asama - 通讯作者:
H. Asama
Constructing two-scale network microstructure with nano-Ti5Si3 for superhigh creep resistance
用纳米Ti5Si3构建二维网络微结构,实现超高抗蠕变性能
- DOI:
10.1016/j.jmst.2019.04.001 - 发表时间:
2019-06 - 期刊:
- 影响因子:10.9
- 作者:
Yang Jiao;L. J. Huang;Shaolou Wei;Hua-Xin Peng;Qi An;Sida Jiang;L. Geng - 通讯作者:
L. Geng
Rehabilitation Intervention of Physical Therapists Improves Muscle Synergy during Standing-up Motion of Stroke Patients
物理治疗师的康复干预改善中风患者站立运动时的肌肉协同作用
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Eguchi Ryo;Yorozu Ayanori;Fukumoto Takahiko;Takahashi Masaki;Qi An - 通讯作者:
Qi An
Investigating the Relationship between Assisted Driver's Sense of Agency and EEG Alpha Power
调查辅助驾驶员的代理感与脑电图 Alpha Power 之间的关系
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Sonmin Yun;Wen Wen;Qi An;Shunsuke Hamasaki;Hiroshi Yamakawa;Yusuke Tamura;Atsushi Yamashita and Hajime Asama - 通讯作者:
Atsushi Yamashita and Hajime Asama
Experimental research on a boron-coated multi-wire proportional chamber neutron detector
涂硼多线比例室中子探测器实验研究
- DOI:
10.1140/epjp/i2017-11526-5 - 发表时间:
2017-06 - 期刊:
- 影响因子:0
- 作者:
Ying Zhang;Yan-feng Wang;Xiao-Hu Wang;Xiao-qing Tu;Jian-Rong Zhou;Bo Yang;Zhi-jia Sun;Ping Cao;Qi An;Jian Gong - 通讯作者:
Jian Gong
Qi An的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qi An', 18)}}的其他基金
Collaborative Research: FuSe: Spin Gapless Semiconductors and Effective Spin Injection Design for Spin-Orbit Logic
合作研究:FuSe:自旋无间隙半导体和自旋轨道逻辑的有效自旋注入设计
- 批准号:
2328829 - 财政年份:2023
- 资助金额:
$ 47.64万 - 项目类别:
Standard Grant
相似国自然基金
Applications of AI in Market Design
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研 究基金项目
基于“Design-Build-Test”循环策略的新型紫色杆菌素组合生物合成研究
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
在噪声和约束条件下的unitary design的理论研究
- 批准号:12147123
- 批准年份:2021
- 资助金额:18 万元
- 项目类别:专项基金项目
相似海外基金
Digitally Assisted Power Amplifier Design with Enhanced Energy Efficiency
具有增强能效的数字辅助功率放大器设计
- 批准号:
LP220200906 - 财政年份:2024
- 资助金额:
$ 47.64万 - 项目类别:
Linkage Projects
Conference: Fostering Innovation through Enhanced Understanding of Healthcare Equity and Inclusion: A National Design Competition in Rehabilitation and Assistive Devices
会议:通过增强对医疗保健公平和包容性的理解促进创新:全国康复和辅助器具设计竞赛
- 批准号:
2404775 - 财政年份:2024
- 资助金额:
$ 47.64万 - 项目类别:
Standard Grant
ZEBAI - Innovative methodologies for the design of Zero-Emission and cost-effective Buildings enhanced by Artificial Intelligence
ZEBAI - 通过人工智能增强零排放和具有成本效益的建筑设计的创新方法
- 批准号:
10094812 - 财政年份:2024
- 资助金额:
$ 47.64万 - 项目类别:
EU-Funded
CAREER: Integrating Graph Theory based Networks with Machine Learning for Enhanced Process Synthesis and Design
职业:将基于图论的网络与机器学习相集成以增强流程综合和设计
- 批准号:
2339588 - 财政年份:2024
- 资助金额:
$ 47.64万 - 项目类别:
Continuing Grant
Magnetic Resonances in Nonlinear Dielectric Nanostructures: New Light-Matter Interactions and Machine Learning Enhanced Design
非线性介电纳米结构中的磁共振:新的光-物质相互作用和机器学习增强设计
- 批准号:
2240562 - 财政年份:2023
- 资助金额:
$ 47.64万 - 项目类别:
Standard Grant
Design and fabrication of a hybrid metamaterial scanning probe for tunable tip-enhanced nanospectroscopy
用于可调谐尖端增强纳米光谱的混合超材料扫描探针的设计和制造
- 批准号:
23K13640 - 财政年份:2023
- 资助金额:
$ 47.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
PFI-RP: Developing Market-Ready Affordable Robotic Lower-Limb Prostheses through Unified Joint Actuator Design and AI-Enhanced Multi-Modal Interactive Control
PFI-RP:通过统一的关节执行器设计和人工智能增强的多模态交互控制,开发市场上经济实惠的机器人下肢假肢
- 批准号:
2234621 - 财政年份:2023
- 资助金额:
$ 47.64万 - 项目类别:
Standard Grant
DigiSnake - To Design and Develop Digitally Enhanced, Dexterous and {Teleoperated} Snake Robots.
DigiSnake - 设计和开发数字增强型、灵巧型和{远程操作}蛇形机器人。
- 批准号:
2888600 - 财政年份:2023
- 资助金额:
$ 47.64万 - 项目类别:
Studentship
Development of Digital Oil Technique for Optimal Design of CO2-Enhanced Oil Recovery
二氧化碳提高采收率优化设计的数字石油技术开发
- 批准号:
23K04647 - 财政年份:2023
- 资助金额:
$ 47.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Innovative diabetic insole: customised design for enhanced comfort and functionality
创新的糖尿病鞋垫:定制设计,增强舒适度和功能性
- 批准号:
ES/Y007638/1 - 财政年份:2023
- 资助金额:
$ 47.64万 - 项目类别:
Research Grant