Collaborative Research: FuSe: Spin Gapless Semiconductors and Effective Spin Injection Design for Spin-Orbit Logic

合作研究:FuSe:自旋无间隙半导体和自旋轨道逻辑的有效自旋注入设计

基本信息

  • 批准号:
    2328829
  • 负责人:
  • 金额:
    $ 26.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Non-technical Description:Modern life has been transformed by electronics based on moving electrons through nanoscale semiconductor devices. Spintronics combine electronics with spin, an intrinsic property of elementary particles, making possible even smaller devices that operate at higher speeds and consume less energy. Spintronics could thus revolutionize electronics for data processing, communication, and storage. This project spans design and synthesis of novel materials to fabrication and characterization of advanced spintronic devices. The team will synthesize custom-designed semiconducting alloys to read data more efficiently in a spintronic logic circuit. A fundamental understanding of the structural-performance relationship for spintronic materials will be gained through characterization of structure and materials properties. Collectively, the outcome of this project is expected to be information on how to manufacture a highly efficient spintronic device. The team’s workforce development plan has a central theme of technology communication. The approach seeks to educate and develop faculty, students, and the future workforce to be leaders in the semiconductor industry. Undergraduate and graduate students from five institutions will be trained to better communicate and identify transferable skills to make themselves marketable to semiconductor industry employers. This training will serve as a blueprint for the launch of a micro-credential in technology communication with integrated Industry-Recognized Credentials, and this project will support 75 students to receive this credential. Outreach events will target both undergraduate and K-12 audiences to raise awareness of jobs in the semiconductor industry. These activities will be reinforced by workforce development activities and industry partnerships. Technical Description:Spin gapless semiconductors (SGS) are a new class of spintronic materials that have a finite bandgap in their electronic band structure for electrons with one spin and a zero bandgap for electrons with the other spin, which is advantageous for spintronic applications. Current SGS compounds often display atomic defects and disordering, crucial elements for the material's spin polarization and injection capabilities. In order to harness the unique advantage of SGS as efficient spin injectors, which is indispensable for spin logic devices such as the magneto-electric spin-orbit (MESO) logic, the team is using Mn2CoAl as a platform to develop a strategy that stabilizes the near-SGS behavior through understanding and manipulation of influences from composition, processing, and interfaces. This is a collaborative material-process-device co-design project. At the materials level, the team is determining the relationship between chemical composition, phases, atomic ordering, and resultant electric and magnetic transport properties. On the thin film synthesis level, the team is performing low-energetic, epitaxial-quality film growth with sputter beam epitaxy. Lessons learned from the fundamental materials research will be used to avoid deleterious defects via composition and processing control. At the device level, the team is nanopatterning thin SGS layers into local spin injection junctions for the spin-to-charge readout side of the MESO device. Overall, this research will not only develop a strategy to use SGS materials for spintronic devices but also deepen current understanding on how materials composition, processing, and interfaces collectively impact the performance of a spin injector.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:现代生活已由基于纳米级半导体设备移动电子设备的电子设备转化。 Spintronics将电子与自旋(基本颗粒的固有特性)相结合,即使以较高速度运行并消耗较少的能量的设备也可能使得能量。因此,Spintronics可以彻底改变电子产品的数据处理,通信和存储。该项目涵盖了新型材料的设计和合成,以制造和表征高级自旋设备。该团队将合成自定义设计的半导体合金,以更有效地在Spintronic逻辑电路中读取数据。通过表征结构和材料特性的表征,将获得对旋转材料结构性绩效关系的基本理解。总体而言,该项目的结果有望是有关如何制造高效的Spintronic设备的信息。该团队的劳动力发展计划具有技术沟通的中心主题。该方法旨在教育和发展教师,学生和未来的劳动力,成为半导体行业的领导者。来自五个机构的本科生和研究生将接受培训,以更好地沟通和确定可转移的技能,以使自己可以在半导体行业雇主身上进行市场销售。该培训将作为与综合行业认可的资格进行技术通信的微观沟通的蓝图,该项目将支持75名学生获得此证书。外展活动将针对本科和K-12受众群体,以提高对半导体行业的工作的认识。这些活动将由劳动力发展活动和行业伙伴关系加强。技术描述:无自旋间隙半导体(SGS)是一类新的自旋材料,其电子带的电子带中具有有限的电子带的带隙,具有一种自旋,并且具有另一个旋转的电子带零带,这对于自旋应用是有利的。当前的SGS化合物经常显示原子缺陷和无序,对于材料的自旋极化和注射能力的关键元素。为了利用SGS作为高效自旋喷油器的独特优势,对于诸如磁电旋转轨道(MESO)逻辑等自旋逻辑设备(例如旋转逻辑设备)是必不可少的,该团队正在使用MN2Coal作为一种平台来开发一种策略,可以通过理解和对组成,处理和互动的影响来稳定近SG的行为,并进行了处理。这是一个协作的材料制作设备共同设计项目。在材料一级,团队正在确定化学成分,相,原子订购以及由此产生的电气和磁运输特性之间的关系。在薄膜的合成水平上,该团队正在伴随着溅射束外延的低能性,外在质量的膜增长。从基本材料研究中汲取的经验教训将用于避免通过组成和加工控制的有害缺陷。在设备级别,该团队正在将薄薄的SGS层纳入局部旋转注入连接处,以用于Meso设备的旋转式读数侧。总体而言,这项研究不仅将制定一种使用SGS材料进行旋转设备的策略,而且还加深了人们对材料组成,处理和接口如何共同影响旋转注射的性能的最新理解。本奖奖反映了NSF的法定任务,并被认为是通过使用基金会的知识智能和更广泛的影响来通过评估来获得支持的珍贵的,这是珍贵的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qi An其他文献

Multiplied bending ductility and toughness of titanium matrix composites by laminated structure manipulation
通过层状结构操纵使钛基复合材料的弯曲延展性和韧性倍增
  • DOI:
    10.1016/j.matdes.2020.109237
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shuai Wang;LuJun Huang;Shan Jiang;Rui Zhang;FengBo Sun;Qi An;Lin Geng
  • 通讯作者:
    Lin Geng
Phytochemical profile of ethanolic extracts of Chimonanthus salicifolius S. Y. Hu. leaves and its antimicrobial and antibiotic-mediating activity
腊梅乙醇提取物的植物化学特征 S. Y. Hu。
  • DOI:
    10.1016/j.indcrop.2018.09.021
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Ning Wang;Hui Chen;Lei Xiong;Xin Liu;Xiang Li;Qi An;Ximei Ye;Wenjun Wang
  • 通讯作者:
    Wenjun Wang
Carbon Flux with DAMPE Using Machine Learning Methods
使用机器学习方法使用 DAMPE 的碳通量
  • DOI:
    10.22323/1.444.0168
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Stolpovskiy;Francesco Alemanno;C. Altomare;Qi An;P. Azzarello;F. Barbato;P. Bernardini;Xiaomei Bi;I. Cagnoli;M. Cai;E. Casilli;E. Catanzani;Jin Chang;Dengyi Chen;Junling Chen;Zhan;Z. Chen;P. Coppin;M. Cui;T. Cui;Yunqiang Cui;I. De Mitri;Francesco de Palma;Adriano Di Giovanni;M. Di Santo;Qi Ding;T. Dong;Z. Dong;G. Donvito;D. Droz;Jingmin Duan;K. Duan;R. Fan;Yizhong Fan;F. Fang;K. Fang;Chang;Lei Feng;M. Fernandez Alonso;J. M. Frieden;Piergiorgio Fusco;Min Gao;F. Gargano;Essna Ghose;Ke Gong;Y. Gong;D. Guo;Jianhua Guo;Shuang Han;Yi;Guangshun Huang;Xiao Yuan Huang;Y. Huang;M. Ionica;Luyang Jiang;Weizhong Jiang;Y. Jiang;J. Kong;A. Kotenko;D. Kyratzis;S. Lei;W. Li;Wen Li;Xiang Li;X. Li;Y. Liang;Chengming Liu;Hao Liu;Jie Liu;S. Liu;Yang Liu;F. Loparco;C. Luo;Miao Ma;P. Ma;Tao Ma;Xiao Ma;G. Marsella;M. N. Mazziotta;D. Mo;X. Niu;Xu Pan;A. Parenti;W. Peng;X. Peng;C. Perrina;E. Putti;Rui Qiao;J. Rao;A. Ruina;Z. Shangguan;Weiming Shen;Z. Shen;Z. Shen;L. Silveri;Jing Song;H. Su;Meng Su;H. Sun;Zhiyu Sun;A. Surdo;X. Teng;A. Tykhonov;J. Wang;L. Wang;Shen Wang;X. Wang;Y. Wang;Ying Wang;Yuanzhu Wang;D. Wei;J. Wei;Yining Wei;Di Wu;Jian Wu;L. Wu;Sha Wu;Xin Wu;Z. Xia;E. Xu;Hailun Xu;Jing Xu;Z. Xu;Zizhong Xu;Zunlei Xu;G. Xue;Hai;P. Yang;Y. Yang;H. Yao;Yu;G. Yuan;Qiang Yuan;C. Yue;J. Zang;Shenmin Zhang;W. Zhang;Yan Zhang;Y. Zhang;Yi Zhang;Y. Zhang;Y. Zhang;Yunlong Zhang;Zhe Zhang;Z. Zhang;Cong;Hong;Xu Zhao;C. Zhou;Yanzi Zhu
  • 通讯作者:
    Yanzi Zhu
Constructing two-scale network microstructure with nano-Ti5Si3 for superhigh creep resistance
用纳米Ti5Si3构建二维网络微结构,实现超高抗蠕变性能
  • DOI:
    10.1016/j.jmst.2019.04.001
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Yang Jiao;L. J. Huang;Shaolou Wei;Hua-Xin Peng;Qi An;Sida Jiang;L. Geng
  • 通讯作者:
    L. Geng
Analysis of Physiotherapy Effect on Sit-to-Stand Movement Dynamics after Stroke
理疗对中风后坐站运动动力学的影响分析
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kogami Hiroki;An Qi;Yang Ningjia;Yamakawa Hiroshi;Tamura Yusuke;Yamashita Atsushi;Asama Hajime;Shimoda Shingo;Yamasaki Hiroshi;Itkonen Matti;Shibata-Alnajjar Fady;Hattori Noriaki;Kinomoto Makoto;Takahashi Kouji;Fujii Takanori;Otomune Hironori;Miyai Ichiro;Ruoxi Wang;湖上碩樹;Qi An;Hiroki Kogami;Fady Alnajjar;Hiroshi Yamasaki
  • 通讯作者:
    Hiroshi Yamasaki

Qi An的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qi An', 18)}}的其他基金

Modeling and Design of Enhanced Strength and Ductility Through Grain Boundary Engineering--A Study of Boron Carbide Based Superhard Materials
通过晶界工程增强强度和延展性的建模与设计--碳化硼基超硬材料的研究
  • 批准号:
    1727428
  • 财政年份:
    2017
  • 资助金额:
    $ 26.02万
  • 项目类别:
    Standard Grant

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328975
  • 财政年份:
    2024
  • 资助金额:
    $ 26.02万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328973
  • 财政年份:
    2024
  • 资助金额:
    $ 26.02万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328972
  • 财政年份:
    2024
  • 资助金额:
    $ 26.02万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328974
  • 财政年份:
    2024
  • 资助金额:
    $ 26.02万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Metaoptics-Enhanced Vertical Integration for Versatile In-Sensor Machine Vision
合作研究:FuSe:Metaoptics 增强型垂直集成,实现多功能传感器内机器视觉
  • 批准号:
    2416375
  • 财政年份:
    2023
  • 资助金额:
    $ 26.02万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了