Next Generation Deep Drawing Using Smart Observers, Close-Loop Control, and 3D-Servo-Press

使用智能观察器、闭环控制和 3D 伺服压力机的下一代深拉伸

基本信息

  • 批准号:
    1727490
  • 负责人:
  • 金额:
    $ 36.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Smart factories represent the fourth industrial revolution where, for example, automation and data exchange in cyber-physical systems, with respect to a single process or across an entire manufacturing facility, are exploited to improve processes and product performance. With enhanced understanding of material behavior (including failure), state-of-the-art automation, connected systems, and advances in computational time, such smart factories are attainable. This award seeks to implement smart factory principles to realize a robust, intelligent sheet forming process capable of making real time process adjustments. To achieve this goal the University of New Hampshire (UNH) will collaborate with the Production Technology and Forming Machines (PtU) Institute at the Technische Universität Darmstadt in Germany. This award, which supports the research undertaken by UNH, centers on understanding the fundamental aspects of sheet metal behavior under non-uniform deformation conditions, the prediction of process conditions leading to material failure, and the sensing of failure modes. The resulting modeling predictions and material's knowledge will be integrated into the unique sheet forming capabilities at PtU for evaluation of real-time control capabilities. No NSF funds will support PtU activities. Success will translate into higher processing capabilities (more efficient processes capable of processing a wider range of materials) which is of great significance to US based automotive, aerospace, and energy based industries. Planned personnel exchanges will provide exceptional educational and cultural opportunities for the researchers involved in the project. The objectives of this research are to (i) exploit the flexibility of a 3D servo-press to improve the formability of sheet metal components (ii) establish the scientific understanding to identify non-linear deformation trajectories for process improvement, (iii) investigate an acoustic emissions (AE) sensor to predict failure in sheet metal components, and (iv) create a framework for smart factory process implementation and benefits. If processes can automatically be adjusted based on variations in the material, lubrication, process conditions, etc. as the process progress, failure of the material, which is a concern in sheet metal forming due to the thin gauge of the blanks, can be avoided, and improvements in the dimensional accuracy and final properties of product can be achieved. The research will capitalize on the strengths of the two institutions with respect to forming machine at PtU and material characterization and modeling at UNH. Personnel exchanges and regular communications will assure the overall success of the collaboration.
智能工厂代表着第四次工业革命,例如,在单个过程或整个制造设施中,网络物理系统中的自动化和数据交换被用来改善过程和产品性能。随着对材料行为(包括故障)的深入了解,最先进的自动化,连接的系统以及计算时间的进步,这样的智能工厂是可以实现的。该奖项旨在实施智能工厂原则,以实现能够进行真实的时间过程调整的稳健、智能的板材成形过程。为了实现这一目标,新罕布什尔州大学(UNH)将与德国工业大学达姆施塔特的生产技术和成形机械(PtU)研究所合作。该奖项支持UNH进行的研究,重点是了解非均匀变形条件下金属板材行为的基本方面,预测导致材料失效的工艺条件以及失效模式的检测。由此产生的建模预测和材料的知识将被集成到独特的板成形能力在PtU的实时控制能力的评估。没有NSF基金将支持PtU活动。成功将转化为更高的加工能力(能够加工更广泛材料的更高效工艺),这对美国的汽车,航空航天和能源行业具有重要意义。计划中的人员交流将为参与该项目的研究人员提供特殊的教育和文化机会。本研究的目标是(i)利用3D伺服压力机的灵活性来提高金属板材部件的可成形性(ii)建立科学的理解,以识别非线性变形轨迹,以改进工艺,(iii)研究声发射(AE)传感器来预测金属板材部件的故障,以及(iv)创建智能工厂工艺实施和效益的框架。如果能够根据加工过程中材料、润滑、加工条件等的变化自动调整加工过程,则能够避免由于坯料的薄规格而引起的金属板成形中的材料失效,并且能够实现产品的尺寸精度和最终性能的改进。该研究将利用这两个机构在PtU成型机和UNH材料表征和建模方面的优势。人员交流和定期沟通将确保合作取得全面成功。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Acoustic emission monitoring for necking in sheet metal forming
  • DOI:
    10.1016/j.jmatprotec.2022.117758
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    M. Baral;Ali Al-Jewad;A. Breunig;P. Groche;J. Ha;Y. Korkolis;B. Kinsey
  • 通讯作者:
    M. Baral;Ali Al-Jewad;A. Breunig;P. Groche;J. Ha;Y. Korkolis;B. Kinsey
Robustness of deep-drawing finite-element simulations to process variations
  • DOI:
    10.1007/s12289-022-01695-3
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Kelin Chen;A. Breunig;J. Ha;B. Kinsey;P. Groche;Y. Korkolis
  • 通讯作者:
    Kelin Chen;A. Breunig;J. Ha;B. Kinsey;P. Groche;Y. Korkolis
Flange Wrinkling in Deep-Drawing: Experiments, Simulations and a Reduced-Order Model
Effectiveness of different closed-loop control strategies for deep drawing on single-acting 3D Servo Presses
单动 3D 伺服压力机拉深时不同闭环控制策略的有效性
  • DOI:
    10.1016/j.cirp.2022.04.072
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Groche, Peter;Breunig, Alexander;Chen, Kelin;Molitor, Dirk A.;Ha, Jinjin;Kinsey, Brad L.;Korkolis, Yannis P.
  • 通讯作者:
    Korkolis, Yannis P.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brad Kinsey其他文献

Parametric Study of DIC Technology for Strain Distribution of CuZn30 during Micro-bending Process
CuZn30微弯过程应变分布的DIC技术参数化研究
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lijie Wang;Brad Kinsey
  • 通讯作者:
    Brad Kinsey
Advantages of water droplet machining over abrasive waterjet cutting of carbon fiber reinforced polymer
  • DOI:
    10.1016/j.mfglet.2022.07.041
  • 发表时间:
    2022-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Benjamin Mitchell;Ahmad Sadek;Brad Kinsey
  • 通讯作者:
    Brad Kinsey

Brad Kinsey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brad Kinsey', 18)}}的其他基金

IUCRC Planning Grant University of New Hampshire: Center for Industrial Metal Forming
IUCRC 规划拨款新罕布什尔大学:工业金属成型中心
  • 批准号:
    2209759
  • 财政年份:
    2022
  • 资助金额:
    $ 36.44万
  • 项目类别:
    Standard Grant
RII-Track 1: New Hampshire Center for Multiscale Modeling and Manufacturing of Biomaterials (NH Bio-Made)
RII-Track 1:新罕布什尔州生物材料多尺度建模和制造中心 (NH Bio-Made)
  • 批准号:
    1757371
  • 财政年份:
    2018
  • 资助金额:
    $ 36.44万
  • 项目类别:
    Cooperative Agreement
RET Site: Research to Inspire Students in Engineering through commUnity Partnerships (RISE UP)
RET 网站:通过社区合作伙伴关系激励工程专业学生的研究 (RISE UP)
  • 批准号:
    1711701
  • 财政年份:
    2017
  • 资助金额:
    $ 36.44万
  • 项目类别:
    Standard Grant
University of New Hampshire Planning Grant: I/UCRC for Metal Deformation Processes (iuFOCUS)
新罕布什尔大学规划资助:I/UCRC 金属变形过程 (iuFOCUS)
  • 批准号:
    1624640
  • 财政年份:
    2016
  • 资助金额:
    $ 36.44万
  • 项目类别:
    Standard Grant
GOALI: Fundamental Studies on High Impact Pressure, Supersonic Water Droplets for Material Deformation and Removal
GOALI:高冲击压力、超音速水滴材料变形和去除的基础研究
  • 批准号:
    1462993
  • 财政年份:
    2015
  • 资助金额:
    $ 36.44万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Fundamental Research on Impact Welding of Aluminum and Steel
GOALI/合作研究:铝和钢冲击焊接的基础研究
  • 批准号:
    1537471
  • 财政年份:
    2015
  • 资助金额:
    $ 36.44万
  • 项目类别:
    Standard Grant
GOALI: Continuous-Bending-under-Tension Studies to Enhance the Formability of Advanced Steels and Aluminum Alloys
目标:连续拉伸弯曲研究,以提高先进钢和铝合金的成形性
  • 批准号:
    1301081
  • 财政年份:
    2013
  • 资助金额:
    $ 36.44万
  • 项目类别:
    Standard Grant
RET in Engineering and Computer Science Site: Research to Inspire Students about Engineering (RISE) through Inquiry
工程和计算机科学领域的 RET 网站:通过探究激发学生工程知识 (RISE) 的研究
  • 批准号:
    1132648
  • 财政年份:
    2011
  • 资助金额:
    $ 36.44万
  • 项目类别:
    Standard Grant
GOALI: Characterization, Modeling, and Optimization of Magnetic Pulse Welding Processes
GOALI:磁脉冲焊接工艺的表征、建模和优化
  • 批准号:
    0928319
  • 财政年份:
    2009
  • 资助金额:
    $ 36.44万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Digital Imaging Correlation System to Advance Research, Training and Education in Engineering
MRI:获取数字成像相关系统以推进工程研究、培训和教育
  • 批准号:
    0821517
  • 财政年份:
    2008
  • 资助金额:
    $ 36.44万
  • 项目类别:
    Standard Grant

相似国自然基金

Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:

相似海外基金

Toward next-generation flexible and interpretable deep learning: A novel evolutionary wide dendritic learning
迈向下一代灵活且可解释的深度学习:一种新颖的进化广泛的树突学习
  • 批准号:
    23K24899
  • 财政年份:
    2024
  • 资助金额:
    $ 36.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of next generation ISFET pH sensor to identify upwelling area of deep ocean circulation
开发下一代 ISFET pH 传感器来识别深海环流的上升流区域
  • 批准号:
    23K17464
  • 财政年份:
    2023
  • 资助金额:
    $ 36.44万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Building the next generation of intelligent machines with cooperative deep learning.
通过协作深度学习构建下一代智能机器。
  • 批准号:
    RGPIN-2022-05088
  • 财政年份:
    2022
  • 资助金额:
    $ 36.44万
  • 项目类别:
    Discovery Grants Program - Individual
A deep longitudinal analysis of next generation influenza vaccines in older adults
对老年人使用下一代流感疫苗的深入纵向分析
  • 批准号:
    10544172
  • 财政年份:
    2022
  • 资助金额:
    $ 36.44万
  • 项目类别:
Next-generation audio and speech processing architectures based on deep learning
基于深度学习的下一代音频和语音处理架构
  • 批准号:
    22H03614
  • 财政年份:
    2022
  • 资助金额:
    $ 36.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Next Generation Software-defined Intelligent Radio Access Network (SIRAN) - Leveraging Deep Learning for Autonomous and Intelligent Service Provisioning
下一代软件定义智能无线接入网络 (SIRAN) - 利用深度学习实现自主和智能服务提供
  • 批准号:
    RGPIN-2019-06348
  • 财政年份:
    2022
  • 资助金额:
    $ 36.44万
  • 项目类别:
    Discovery Grants Program - Individual
Building the next generation of intelligent machines with cooperative deep learning.
通过协作深度学习构建下一代智能机器。
  • 批准号:
    DGECR-2022-00422
  • 财政年份:
    2022
  • 资助金额:
    $ 36.44万
  • 项目类别:
    Discovery Launch Supplement
A deep longitudinal analysis of next generation influenza vaccines in older adults
对老年人使用下一代流感疫苗的深入纵向分析
  • 批准号:
    10342393
  • 财政年份:
    2022
  • 资助金额:
    $ 36.44万
  • 项目类别:
Toward next-generation flexible and interpretable deep learning: A novel evolutionary wide dendritic learning
迈向下一代灵活且可解释的深度学习:一种新颖的进化广泛的树突学习
  • 批准号:
    22H03643
  • 财政年份:
    2022
  • 资助金额:
    $ 36.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Precision cosmology with next-generation wide and deep cosmological surveys
精确宇宙学与下一代广泛和深入的宇宙学调查
  • 批准号:
    21J00011
  • 财政年份:
    2021
  • 资助金额:
    $ 36.44万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了