Collaborative Research: Novel Relaxations for Cardinality-constrained Optimization Problems with Applications in Network Interdiction and Data Analysis

协作研究:基数约束优化问题的新颖松弛及其在网络拦截和数据分析中的应用

基本信息

  • 批准号:
    1727989
  • 负责人:
  • 金额:
    $ 39.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

In many fields, such as telecommunication, logistics, and genetics, a decision-maker often prefers to find a solution, where only a fraction of potential resource assignments is selected. Such solutions are easier to interpret and implement, but they may be difficult to identify. Leveraging new structural results, the investigators develop new techniques to obtain high quality solutions to these types of problems. This project will apply these techniques to data analysis and network interdiction problems. Network interdiction models have been successfully used to identify vulnerabilities in power and water systems, and to secure networked systems. Improved methods will help create better predictive models and yield tools to enhance national security. This research will also support training of graduate and undergraduate students and creation of pedagogical material.This project seeks to develop new convex relaxation techniques that will lead to stronger relaxation bounds for cardinality constrained mathematical programs (CCMPs) and improve the convergence of generic and custom branch-and-bound codes for mixed integer nonlinear programs. Specifically, the researchers will (i) investigate bilinear formulations of cardinality requirements through the lens of the recently developed convexification procedures; (ii) focus on disjunctive relaxations previously introduced for linear relaxations of CCMPs, which can be used to generate cuts from any simplex basic solution that does not satisfy a cardinality constraint; (iii) develop cutting plane strategies that can generate convex hull descriptions devised from extensions of reformulation-linearization techniques; and (iv) utilize the concept of permutation-invariance to develop new formulations and relaxations for CCMPs arising in data analysis and models of various logical propositions. The project will also investigate the application of these results to the KKT formulation of network interdiction with asymmetric information. The investigators will also make use of these improved relaxations in the development of heuristic and exact solution techniques for sparse principal component analysis.
在许多领域,如电信,物流和遗传学,决策者往往更喜欢找到一个解决方案,其中只有一小部分潜在的资源分配被选中。这种解决方案更容易解释和实施,但可能难以识别。利用新的结构结果,研究人员开发新的技术,以获得高质量的解决方案,这些类型的问题。这个项目将把这些技术应用于数据分析和网络阻断问题。 网络阻断模型已成功地用于识别电力和水系统中的脆弱性,并确保网络系统的安全。改进的方法将有助于创建更好的预测模型,并产生加强国家安全的工具。该研究还将支持研究生和本科生的培训以及教学材料的创建。该项目旨在开发新的凸松弛技术,该技术将导致基数约束数学规划(CCMP)的更强松弛边界,并改善混合整数非线性规划的通用和自定义分支定界码的收敛性。具体而言,研究人员将(i)通过最近开发的凸化程序的透镜研究基数要求的双线性公式;(ii)专注于先前为CCMP的线性松弛引入的析取松弛,其可用于从任何不满足基数约束的单纯形基本解生成切割;(iii)开发切割平面策略,该切割平面策略能够生成从重构线性化技术的扩展设计的凸形船体描述;及(iv)利用排列的概念-不变性,为数据分析和各种逻辑命题的模型中出现的CCMP开发新的公式和松弛。该项目还将研究这些结果的应用,网络阻断与不对称信息的KKT制定。 研究人员还将利用这些改进的松弛的启发式和精确的解决方案技术稀疏主成分分析的发展。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tractable Relaxations of Composite Functions
复合函数的易于处理的松弛
  • DOI:
    10.1287/moor.2021.1162
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    He, Taotao;Tawarmalani, Mohit
  • 通讯作者:
    Tawarmalani, Mohit
Probability estimation via policy restrictions, convexification, and approximate sampling
通过政策限制、凸化和近似抽样进行概率估计
  • DOI:
    10.1007/s10107-022-01823-6
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Chandra, Ashish;Tawarmalani, Mohit
  • 通讯作者:
    Tawarmalani, Mohit
A new framework to relax composite functions in nonlinear programs
  • DOI:
    10.1007/s10107-020-01541-x
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Taotao He;Mohit Tawarmalani
  • 通讯作者:
    Taotao He;Mohit Tawarmalani
Convexification of Permutation-Invariant Sets and an Application to Sparse Principal Component Analysis
  • DOI:
    10.1287/moor.2021.1219
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jinhak Kim;Mohit Tawarmalani;Jean-Philippe P. Richard
  • 通讯作者:
    Jinhak Kim;Mohit Tawarmalani;Jean-Philippe P. Richard
On cutting planes for cardinality-constrained linear programs
关于基数约束线性规划的割平面
  • DOI:
    10.1007/s10107-018-1306-0
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Kim, Jinhak;Tawarmalani, Mohit;Richard, Jean-Philippe P.
  • 通讯作者:
    Richard, Jean-Philippe P.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mohit Tawarmalani其他文献

Performance Sensitive Replication in Geo-distributed Cloud Datastores
地理分布式云数据存储中的性能敏感复制
Lancet: Better network resilience by designing for pruned failure sets
《柳叶刀》:通过设计修剪故障集来提高网络弹性
Convexification of Permutation-Invariant Sets and an Application to Sparse PCA
排列不变集的凸化及其在稀疏 PCA 中的应用
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jinhak Kim;Mohit Tawarmalani;Jean
  • 通讯作者:
    Jean
Optimization of distillation configurations for multicomponent-product distillations
  • DOI:
    10.1016/j.compchemeng.2024.108628
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Tony Joseph Mathew;Sundar Narayanan;Amrit Jalan;Logan R. Matthews;Himanshu Gupta;Rustom Billimoria;Carla Sofia Pereira;Chris Goheen;Mohit Tawarmalani;Rakesh Agrawal
  • 通讯作者:
    Rakesh Agrawal
Lifted inequalities for $$0\mathord {-}1$$ mixed-integer bilinear covering sets
  • DOI:
    10.1007/s10107-013-0652-1
  • 发表时间:
    2013-04-17
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Kwanghun Chung;Jean-Philippe P. Richard;Mohit Tawarmalani
  • 通讯作者:
    Mohit Tawarmalani

Mohit Tawarmalani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mohit Tawarmalani', 18)}}的其他基金

Collaborative Research: Novel Tighter Relaxations for Complementarity Constraints with Applications to Nonlinear and Bilevel Programming
协作研究:互补约束的新颖更严格松弛及其在非线性和双层规划中的应用
  • 批准号:
    1234897
  • 财政年份:
    2012
  • 资助金额:
    $ 39.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Generating Stronger Cuts for Nonlinear Programs Via Orthogonal Disjunctions and Lifting Techniques
协作研究:通过正交析取和提升技术为非线性程序生成更强的削减
  • 批准号:
    0900065
  • 财政年份:
    2009
  • 资助金额:
    $ 39.64万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
  • 批准号:
    2347992
  • 财政年份:
    2024
  • 资助金额:
    $ 39.64万
  • 项目类别:
    Standard Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
  • 批准号:
    2347991
  • 财政年份:
    2024
  • 资助金额:
    $ 39.64万
  • 项目类别:
    Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
  • 批准号:
    2346198
  • 财政年份:
    2024
  • 资助金额:
    $ 39.64万
  • 项目类别:
    Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
  • 批准号:
    2346197
  • 财政年份:
    2024
  • 资助金额:
    $ 39.64万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
  • 批准号:
    2312872
  • 财政年份:
    2023
  • 资助金额:
    $ 39.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Enhanced Photolysis and Advanced Oxidation Processes by Novel KrCl* (222 nm) Irradiation
合作研究:通过新型 KrCl* (222 nm) 辐照增强光解和高级氧化过程
  • 批准号:
    2310137
  • 财政年份:
    2023
  • 资助金额:
    $ 39.64万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
  • 批准号:
    2324033
  • 财政年份:
    2023
  • 资助金额:
    $ 39.64万
  • 项目类别:
    Standard Grant
Collaborative Research: IHBEM: The fear of here: Integrating place-based travel behavior and detection into novel infectious disease models
合作研究:IHBEM:这里的恐惧:将基于地点的旅行行为和检测整合到新型传染病模型中
  • 批准号:
    2327797
  • 财政年份:
    2023
  • 资助金额:
    $ 39.64万
  • 项目类别:
    Continuing Grant
Collaborative Research: Applying a novel approach to link microbial growth efficiency, function and energy transfer in the ocean
合作研究:应用一种新方法将海洋中微生物的生长效率、功能和能量转移联系起来
  • 批准号:
    2219796
  • 财政年份:
    2023
  • 资助金额:
    $ 39.64万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 39.64万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了