Collaborative Research: A New Nonlinear Modal Updating Framework for Soft, Hydrated Materials

协作研究:用于软水合材料的新型非线性模态更新框架

基本信息

  • 批准号:
    1728186
  • 负责人:
  • 金额:
    $ 23.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

The mechanical properties of soft, hydrated materials have long been of interest to the scientific community. Using soft materials in mechanical designs is becoming increasingly prominent due to their obvious advantages such as flexibility in design and intentional exploitation of nonlinearity. Especially, the high-rate response of soft materials has received attention due to their many applications in robotics, materials and the biomedical sciences. Most soft and hydrated materials (e.g., biomaterials) exhibit complex mechanical behavior that is challenging to quantify due to measurement uncertainties, mechanical anisotropy and inhomogeneity. In this project, a new nonlinear dynamics-based system identification and model updating methodology will be formulated to characterize and model soft, hydrated materials. The findings of this research have the potential to drastically enhance the accuracy, cost-efficiency and accessibility of broadband soft material characterization, and, as such, it can be transformative in diverse interdisciplinary areas, such as soft robotic design, mechanical indentation measurements and soft tissue feedback during surgery. The resulting model updating approach for soft materials will be transformative in predictive engineering designs since it will enable the better utilization and integration of soft materials in diverse applications. This approach can be used for both exploiting the nonlinearities in soft mechanical designs, as well as for their health monitoring. This project will also provide training and mentoring opportunities for a diverse group of K12, undergraduate and graduate students, with a special emphasis on underrepresented groups. Interactive demonstrations of the developed methodology are planned to be displayed in local science festivals to engage the interest of the public in this scientific issue.The main objective of this project is to introduce a new nonlinear dynamics-based system identification and model updating methodology to characterize soft, hydrated materials. It is based on direct analysis of measured response time series, and construction of appropriately defined transitions in appropriately defined frequency-energy plots (FEPs) of a soft-tissue tester and sample system. The dynamics of an underlying conservative system (i.e., the corresponding system with no dissipative effects) modeling the tester is then correlated with the measured response by computing nonlinear normal modes (NNMs). In the conservative system model, soft tissues are modeled as highly flexible elements with stiffness and damping nonlinearities. Then, the reconciliation of the measured and simulated responses in the FEPs is utilized to estimate the broadband dissipative properties of the soft tissues. The experimental validation will be done by testing soft materials such as tendons, hydrated PDMS and brain tissue. The physics-based nonlinear approach in this study for model updating is unprecedented since it is based exclusively on direct time series analysis, and the framework is sufficiently general to be applicable to other engineering applications, such as the reconciliation of nonlinear finite element models with experimental measurements, and the accurate model reduction of mechanical and aerospace components. Moreover, this research will drastically increase our understanding of complicated dynamical transitions and modal interactions in systems with nonlinear viscoelastic properties. It will also enable predictive engineering design of such systems and will provide new insights into the broadband response of soft materials by developing and applying a uniquely new nonlinear-dynamics based model updating framework.
长期以来,软质、水合材料的机械性能一直受到科学界的关注。软材料在机械设计中的应用因其在设计上的灵活性和对非线性的有意利用等明显优势而日益突出。尤其是软材料由于其在机器人、材料和生物医学等领域的广泛应用,其高响应速度引起了人们的广泛关注。由于测量的不确定性、力学各向异性和非均质性,大多数软质和水合材料(如生物材料)表现出复杂的力学行为,难以量化。在这个项目中,将制定一种新的基于非线性动力学的系统辨识和模型修正方法来表征和模拟软的、水合的材料。这项研究的结果有可能极大地提高宽带软材料表征的准确性、成本效益和可获得性,因此,它可以在不同的跨学科领域产生变革,例如软机器人设计、机械压痕测量和手术中的软组织反馈。由此产生的软材料模型修正方法将在预测性工程设计中具有变革性,因为它将使软材料在不同应用中更好地利用和集成。这种方法既可用于开发软机械设计中的非线性,也可用于其健康监测。该项目还将为不同的K12、本科生和研究生群体提供培训和指导机会,特别强调代表性不足的群体。这个项目的主要目标是引入一种新的基于非线性动力学的系统识别和模型更新方法来表征软的、水合的材料。它基于对测量的响应时间序列的直接分析,并在软组织测试仪和样本系统的适当定义的频率-能量图(FEP)中构建适当定义的转变。然后,通过计算非线性简正模式(NNM),将模拟测试仪的基本保守系统(即,没有耗散效应的相应系统)的动力学与测量的响应相关联。在保守系统模型中,软组织被建模为具有刚度和阻尼非线性的高度柔性单元。然后,利用FEPS中测量和模拟的响应的一致性来估计软组织的宽带耗散特性。实验验证将通过测试软材料,如肌腱、水合PDMS和脑组织来完成。这项研究中基于物理的非线性模型修正方法是前所未有的,因为它完全基于直接的时间序列分析,而且该框架具有足够的通用性,可以应用于其他工程应用,如非线性有限元模型与实验测量的协调,以及机械和航空航天部件的精确模型降阶。此外,这项研究将极大地加深我们对具有非线性粘弹性系统中复杂的动力学转变和模式相互作用的理解。它还将使此类系统的预测性工程设计成为可能,并将通过开发和应用一种独特的基于非线性动力学的模型修正框架,为软材料的宽带响应提供新的见解。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Nonlinear Reduced-Order Model of the Corpus Callosum Under Planar Coronal Excitation
平面冠状激励下胼胝体的非线性降阶模型
  • DOI:
    10.1115/1.4046503
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mojahed, Alireza;Abderezaei, Javid;Kurt, Mehmet;Bergman, Lawrence A.;Vakakis, Alexander F.
  • 通讯作者:
    Vakakis, Alexander F.
Nonlinear Dynamical Behavior of the Deep White Matter during Head Impact
  • DOI:
    10.1103/physrevapplied.12.014058
  • 发表时间:
    2019-07-30
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Abderezaei, Javid;Zhao, Wei;Kurt, Mehmet
  • 通讯作者:
    Kurt, Mehmet
Amplified Flow Imaging (aFlow): A Novel MRI-Based Tool to Unravel the Coupled Dynamics Between the Human Brain and Cerebrovasculature
  • DOI:
    10.1109/tmi.2020.3012932
  • 发表时间:
    2020-12-01
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Abderezaei, Javid;Martinez, John;Kurt, Mehmet
  • 通讯作者:
    Kurt, Mehmet
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mehmet Kurt其他文献

Antik Lykaonia Kentlerinin İnşa Faliyetlerinde ve Sosyal Hayatında Euergesia Olgusu
Antik Lykaonia Kentlerinin Inşa Faliyetlerinde ve Sosyal Hayatında Euergesia Olgusu
Diabet diagnosis with support vector machines and multi layer perceptron
使用支持向量机和多层感知器进行糖尿病诊断
Direct detection of nonlinear modal interactions from time series measurements
从时间序列测量中直接检测非线性模态相互作用
  • DOI:
    10.1016/j.ymssp.2017.09.010
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    K. Moore;Mehmet Kurt;M. Eriten;D. McFarland;L. Bergman;A. Vakakis
  • 通讯作者:
    A. Vakakis
Time-series-based nonlinear system identification of strongly nonlinear attachments
基于时间序列的强非线性附件非线性系统辨识
  • DOI:
    10.1016/j.jsv.2018.09.033
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    K. Moore;Mehmet Kurt;M. Eriten;D. McFarland;L. Bergman;A. Vakakis
  • 通讯作者:
    A. Vakakis
Increased Hindbrain Motion in Chiari Malformation I Patients Measured Through 3D Amplified MRI (3D aMRI)
通过 3D 放大 MRI (3D aMRI) 测量 Chiari 畸形 I 患者后脑运动增加
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Javid Abderezaei;A. Pionteck;Ya;Alejandro Carrasquilla;Gizem Bilgili;Tse;Itamar Terem;Miriam Scadeng;Patrick Fillingham;Peter Morgenstern;Michael R. Levitt;G. Richard;Ellenbogen;Yang Yang;Samantha J. Holdsworth;Raj K Shrivastava;Mehmet Kurt
  • 通讯作者:
    Mehmet Kurt

Mehmet Kurt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mehmet Kurt', 18)}}的其他基金

CAREER: Nonlinear Resonances of Highly Damped, Soft Materials
职业:高阻尼软材料的非线性共振
  • 批准号:
    2145512
  • 财政年份:
    2022
  • 资助金额:
    $ 23.82万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanical Characterization of Bio-Interfaces by Shear Wave Scattering
合作研究:通过剪切波散射对生物界面进行机械表征
  • 批准号:
    2225156
  • 财政年份:
    2022
  • 资助金额:
    $ 23.82万
  • 项目类别:
    Standard Grant
LEAP-HI: Tackling Brain Diseases with Mechanics: A Data-Driven Approach to Merge Advanced Neuroimaging and Multi-Physics Modeling
LEAP-HI:用力学解决脑部疾病:一种融合先进神经成像和多物理场建模的数据驱动方法
  • 批准号:
    2227232
  • 财政年份:
    2022
  • 资助金额:
    $ 23.82万
  • 项目类别:
    Standard Grant
LEAP-HI: Tackling Brain Diseases with Mechanics: A Data-Driven Approach to Merge Advanced Neuroimaging and Multi-Physics Modeling
LEAP-HI:用力学解决脑部疾病:一种融合先进神经成像和多物理场建模的数据驱动方法
  • 批准号:
    1953323
  • 财政年份:
    2020
  • 资助金额:
    $ 23.82万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanical Characterization of Bio-Interfaces by Shear Wave Scattering
合作研究:通过剪切波散射对生物界面进行机械表征
  • 批准号:
    1826270
  • 财政年份:
    2018
  • 资助金额:
    $ 23.82万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 23.82万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 23.82万
  • 项目类别:
    Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315700
  • 财政年份:
    2024
  • 资助金额:
    $ 23.82万
  • 项目类别:
    Standard Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
  • 批准号:
    2341426
  • 财政年份:
    2024
  • 资助金额:
    $ 23.82万
  • 项目类别:
    Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
  • 批准号:
    2341424
  • 财政年份:
    2024
  • 资助金额:
    $ 23.82万
  • 项目类别:
    Continuing Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306378
  • 财政年份:
    2024
  • 资助金额:
    $ 23.82万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342244
  • 财政年份:
    2024
  • 资助金额:
    $ 23.82万
  • 项目类别:
    Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315699
  • 财政年份:
    2024
  • 资助金额:
    $ 23.82万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding New Labor Relations for the 21st Century
合作研究:理解21世纪的新型劳动关系
  • 批准号:
    2346230
  • 财政年份:
    2024
  • 资助金额:
    $ 23.82万
  • 项目类别:
    Standard Grant
Collaborative Research: New Regression Models and Methods for Studying Multiple Categorical Responses
合作研究:研究多重分类响应的新回归模型和方法
  • 批准号:
    2415067
  • 财政年份:
    2024
  • 资助金额:
    $ 23.82万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了