DMREF: Computationally Driven-Genetically Engineered Materials (CD-GEM)

DMREF:计算驱动基因工程材料 (CD-GEM)

基本信息

  • 批准号:
    1728858
  • 负责人:
  • 金额:
    $ 158.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-10-01 至 2023-03-31
  • 项目状态:
    已结题

项目摘要

Non-technical Description: The development of materials capable of targeted therapy and diagnosis or "theranosis" allows for simultaneously interfacing and treating diseased cells while visualizing what is happening through imaging. Powerful computational and experimental tools will be employed to develop magnetic resonance imaging (MRI)-traceable protein fibers capable of delivering drugs. The resulting biomaterials will have broad societal impact in the field of drug delivery and tissue engineering. Lessons learned from these studies can be employed for delivery of other chemical agents with applications extending to non-medical industries including personal care, cosmetics and environmental remediation. This research will train the next generation of scientists and engineers to employ cutting edge technologies in computational biology, protein engineering and materials science to create, rapidly screen and characterize new functional biomaterials. The project will also engage girls (predominantly women of color) from the Urban Assembly Institute for Math and Science for Young Women who are traditionally underrepresented in STEM on biomaterials in alignment with the Next Generation Science Standards. In collaboration with the start-ups, InSchoolApps, and the MakerSpace, the girls will participate in biomaterials chemistry, computer programming, rendering of proteins in three dimensions and visualization.Technical description: The fabrication of multifunctional materials that can self-assemble into defined structures bears tremendous potential for a number of application including drug delivery and tissue engineering. One challenge is to deliver an appropriate chemical agent and non-invasively monitor the surrounding area amidst a complex biological milieu or extracellular matrix (ECM). The ECM is comprised of protein fibers (from the nano to microscale) organized into a mesoscopic three-dimensional network. The development of a material capable of targeted therapy and diagnosis or "theranosis" would enable one to simultaneously interface with specific cells while providing both detailed functional and molecular information through visualization. We intend to drive design of protein fibers through computation and assess through experimental analysis, their physicochemical properties with the objective to predictably: 1) control self-assembly into fibers on the mesoscale with functional capabilities of small molecule recognition; 2) integrate non-canonical amino acids that encode thermostability and traceability using our developed algorithms for fluorinated amino acids, beyond the limits of biological diversity; and 3) biomineralize and order iron oxide nanoparticles on the organized protein fiber substrates leading to image-ready bio-nanocomposites with magnetic properties. The intellectual merit of this proposal relies on developing a new paradigm for coiled-coil protein materials design that cycles between computation and experimentation. This will enable the rapid iteration for controlling fiber assembly and the identification of rules for coiled-coil fiber and nanocomposite design. In addition to employing state-of-the-art open source programs, we will also use synthetic biology to produce the proteins enabling synthesis for high-throughput screening. This work is well aligned with the Materials Genome Initiative, as we will apply the computational tools already built for protein design with the aim of fabricating novel biomaterials, in this case fibers and inorganic-organic hybrid composites. The versatility of the proposed materials will not only prove useful for applications in biomedicine, but also will lead to fundamental insight into computational methods for modeling and designing protein fibers and nanocomposites.
非技术描述:能够靶向治疗和诊断或“治疗”的材料的开发允许同时接口和治疗患病的细胞,同时可视化成像发生的事情。将采用强大的计算和实验工具来开发能够输送药物的磁共振成像(MRI)的可跟踪蛋白质纤维。由此产生的生物材料将对药物输送和组织工程领域产生广泛的社会影响。从这些研究中学到的经验教训可以用于提供其他化学试剂,并将其应用于非医疗行业,包括个人护理,化妆品和环境修复。这项研究将培训下一代科学家和工程师在计算生物学,蛋白质工程和材料科学中采用尖端技术,以创建,迅速筛选和表征新的功能性生物材料。该项目还将吸引城市数学和科学集会学院的女孩(主要是有色妇女),这些年轻女性传统上与下一代科学标准保持一致的生物材料中的人数不足。与初创企业,Inschoolapps和Makerspace合作,这些女孩将参加生物材料化学,计算机编程,在三个维度上的蛋白质渲染和可视化的蛋白质。技术描述:可以自我组装到定义的材料中的多功能材料的制造具有巨大的应用程序,这些材料具有巨大的应用程序,包括应用程序的数量包括药物交付的药物,包括药物递送。一个挑战是在复杂的生物环境或细胞外基质(ECM)中提供适当的化学剂,并非侵入性地监测周围区域。 ECM由蛋白质纤维(从纳米到显微镜)组成,该蛋白质纤维组织到介观三维网络中。能够靶向治疗和诊断或“治疗疗法”的材料的开发将使人们同时与特定细胞接口,同时通过可视化提供详细的功能和分子信息。我们打算通过计算来推动蛋白质纤维的设计,并通过实验分析评估其物理化学特性,其目标是可预测的:1)将自组装控制在中尺度上具有小分子识别功能功能的纤维; 2)整合了非典型的氨基酸,该氨基酸使用我们开发的算法对氟化氨基酸进行编码和可追溯性,超出了生物多样性的限制; 3)在有组织的蛋白质纤维底物上生物矿物质和有序的氧化铁纳米颗粒,导致具有磁性特性的图像准备就绪的生物纳米复合材料。该提案的智力优点依赖于开发一种新的范式,用于在计算和实验之间循环循环的盘绕蛋白质材料设计。这将使能够控制纤维组件的快速迭代以及识别盘绕螺旋纤维和纳米复合材料设计的规则。除了采用最先进的开源程序外,我们还将使用合成生物学来生产可用于高通量筛查的合成的蛋白质。这项工作与材料基因组计划非常一致,因为我们将应用已为蛋白质设计构建的计算工具,目的是制造新型生物材料,在这种情况下为纤维和无机有机混合复合材料。提议的材料的多功能性不仅对生物医学的应用有用,而且还将导致对建模和设计蛋白质纤维和纳米复合材料的计算方法的基本见解。

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Detection of Cerebrovascular Loss in the Normal Aging C57BL/6 Mouse Brain Using in vivo Contrast-Enhanced Magnetic Resonance Angiography.
  • DOI:
    10.3389/fnagi.2020.585218
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Hill LK;Hoang DM;Chiriboga LA;Wisniewski T;Sadowski MJ;Wadghiri YZ
  • 通讯作者:
    Wadghiri YZ
NetQuilt: deep multispecies network-based protein function prediction using homology-informed network similarity.
  • DOI:
    10.1093/bioinformatics/btab098
  • 发表时间:
    2021-08-25
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Barot M;Gligorijević V;Cho K;Bonneau R
  • 通讯作者:
    Bonneau R
Protein‐Engineered Functional Materials
  • DOI:
    10.1002/adhm.201801374
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    10
  • 作者:
    Yao Wang;P. Katyal;J. Montclare
  • 通讯作者:
    Yao Wang;P. Katyal;J. Montclare
Peptides as key components in the design of non‐viral vectors for gene delivery
  • DOI:
    10.1002/pep2.24189
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Joseph Thomas;Kamia Punia;J. Montclare
  • 通讯作者:
    Joseph Thomas;Kamia Punia;J. Montclare
Engineered Coiled-Coil Protein for Delivery of Inverse Agonist for Osteoarthritis.
用于传递骨关节炎反向激动剂的工程卷曲螺旋蛋白。
  • DOI:
    10.1021/acs.biomac.8b00158
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Yin,Liming;Agustinus,AlbertS;Yuvienco,Carlo;Minashima,Takeshi;Schnabel,NicoleL;Kirsch,Thorsten;Montclare,JinK
  • 通讯作者:
    Montclare,JinK
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jin Montclare其他文献

Jin Montclare的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jin Montclare', 18)}}的其他基金

Collaborative Research: Water-responsive, Shape-shifting Supramolecular Protein Assemblies
合作研究:水响应、变形超分子蛋白质组装体
  • 批准号:
    2304958
  • 财政年份:
    2023
  • 资助金额:
    $ 158.55万
  • 项目类别:
    Standard Grant
I-Corps: Self-assembling, protein-based contrast agent targeted to collagen Type 1
I-Corps:针对 1 型胶原蛋白的自组装蛋白质造影剂
  • 批准号:
    2230243
  • 财政年份:
    2022
  • 资助金额:
    $ 158.55万
  • 项目类别:
    Standard Grant
Collaborative Research: Development of an exosome based lipoproteoplex (E-LPP) for siRNA delivery
合作研究:开发用于 siRNA 递送的基于外泌体的脂蛋白复合物 (E-LPP)
  • 批准号:
    2203680
  • 财政年份:
    2022
  • 资助金额:
    $ 158.55万
  • 项目类别:
    Standard Grant
I-Corps: Development of a rapid point-of-care test for coronavirus (COVID-19) and antibody testing
I-Corps:开发冠状病毒 (COVID-19) 快速护理点测试和抗体测试
  • 批准号:
    2041364
  • 财政年份:
    2020
  • 资助金额:
    $ 158.55万
  • 项目类别:
    Standard Grant
I-Corps: Spatial computing learning system for early literacy development
I-Corps:用于早期读写能力发展的空间计算学习系统
  • 批准号:
    2027314
  • 财政年份:
    2020
  • 资助金额:
    $ 158.55万
  • 项目类别:
    Standard Grant
PFI-TT: Prototyping a Pesticide Detoxifier for High Value Crops
PFI-TT:为高价值作物制作农药解毒剂原型
  • 批准号:
    1918981
  • 财政年份:
    2019
  • 资助金额:
    $ 158.55万
  • 项目类别:
    Standard Grant
I-Corps Sites - Type I: NYU I-Corps Sites for Enhancing Diversity in Entrepreneurship
I-Corps 网站 - I 类:纽约大学 I-Corps 网站,旨在增强创业多样性
  • 批准号:
    1644681
  • 财政年份:
    2017
  • 资助金额:
    $ 158.55万
  • 项目类别:
    Continuing Grant
Engineered Protein-Lipid Systems for siRNA and Small Molecule Delivery
用于 siRNA 和小分子递送的工程蛋白质-脂质系统
  • 批准号:
    1505214
  • 财政年份:
    2015
  • 资助金额:
    $ 158.55万
  • 项目类别:
    Continuing Grant
PFI:AIR - TT: Prototyping a Gene Transfection Tool, GeneTrain
PFI:AIR - TT:基因转染工具 GeneTrain 原型设计
  • 批准号:
    1444983
  • 财政年份:
    2014
  • 资助金额:
    $ 158.55万
  • 项目类别:
    Standard Grant
I-Corps: Lewis Dots 2.0
I-Corps:刘易斯点 2.0
  • 批准号:
    1332165
  • 财政年份:
    2013
  • 资助金额:
    $ 158.55万
  • 项目类别:
    Standard Grant

相似国自然基金

知识计算驱动的智能循证决策情报感知及其动态推演研究
  • 批准号:
    72374082
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
智能计算驱动的分泌系统效应蛋白识别与分析方法研究
  • 批准号:
    62372392
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
生成式AI驱动的普惠金融个性化联邦学习研究
  • 批准号:
    62306077
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于力学机制的数据驱动软材料粘弹性本构建模及计算方法
  • 批准号:
    12372194
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
基于并行计算与数据驱动的微生物流体模拟快速算法研究
  • 批准号:
    12301547
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: DMREF: Computationally Driven Discovery and Synthesis of 2D Materials through Selective Etching
合作研究:DMREF:通过选择性蚀刻计算驱动的 2D 材料发现和合成
  • 批准号:
    2324157
  • 财政年份:
    2023
  • 资助金额:
    $ 158.55万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Computationally Driven Discovery and Synthesis of 2D Materials through Selective Etching
合作研究:DMREF:通过选择性蚀刻计算驱动的 2D 材料发现和合成
  • 批准号:
    2324156
  • 财政年份:
    2023
  • 资助金额:
    $ 158.55万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Computationally Driven Discovery and Synthesis of 2D Materials through Selective Etching
合作研究:DMREF:通过选择性蚀刻计算驱动的 2D 材料发现和合成
  • 批准号:
    2324158
  • 财政年份:
    2023
  • 资助金额:
    $ 158.55万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Computationally Driven Design of Synthetic Tissue-Like Multifunctional Materials
DMREF/合作研究:合成组织类多功能材料的计算驱动设计
  • 批准号:
    2119718
  • 财政年份:
    2021
  • 资助金额:
    $ 158.55万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Computationally Driven Design of Synthetic Tissue-Like Multifunctional Materials
DMREF/合作研究:合成组织类多功能材料的计算驱动设计
  • 批准号:
    2119717
  • 财政年份:
    2021
  • 资助金额:
    $ 158.55万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了