DMREF/Collaborative Research: Computationally Driven Design of Synthetic Tissue-Like Multifunctional Materials

DMREF/合作研究:合成组织类多功能材料的计算驱动设计

基本信息

  • 批准号:
    2119718
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

In nature, living cells join to form tissues capable of collective behaviors, such as sensing and responding to external cues, communicating, sorting and storing chemical species, and adapting their mechanical properties to sustain necessary loads. Biological tissues achieve these desirable properties because of careful control over the contents, arrangements, and interconnections of individual cells, an approach that yields hierarchical materials with high levels of adaptability, responsiveness, and tunable mechanical strength. Replicating these types of emergent properties in synthetic materials remains a major engineering challenge. This Designing Materials to Revolutionize and Engineer our Future (DMREF) award supports basic research and scientific development of material systems that mimic the composition, organization, and properties of living tissues. The computationally led designs of tissues-like materials with precise compositions and spatial arrangements seek to offer a generalizable solution for applications in artificial tissue replacement, wound healing, soft robotics, and embedded computing technologies. In addition, the project will support the technical and professional development of the STEM workforce by promoting the participation of high school, undergraduate, and graduate students, especially from the first-generation and underrepresented groups, through various outreach and research activities.This project aims to study synthetic tissues comprised of independent cell-like compartments coupled hierarchically through mechanical tethering (i.e., self-assembling block copolymer microgels (BCPs) as synthetic cytoskeleton) and selective transport (i.e., protein-enriched biomimetic membranes (BMs) as selective barriers) mechanisms and incorporating stimuli-responsiveness (e.g., via polymers and membrane proteins) into the compartments. Computational approaches combine molecular transport, stimuli-responsive coupled deformations of BCPs, intercompartment adhesion, and biomembrane mechanics to predict failure behaviors, emergent properties, and functionalities of tissue-like assemblies. An iterative feedback loop between theory, computations, synthesis of BCPs, 3D bioprinting, and microscale mechanical characterization is central to the project for validating predictions, informing model development, and creating a modular database. The construction of a compartmentalized material system that exhibits selective internal transport pathways via lipid- and protein-based BMs and tunable mechanical properties via BCPs will be achieved by understanding how the tunable hydrophobic and hydrophilic regions of BCPs: 1) interact with amphiphilic BMs at the nanoscale; 2) self-assemble and entangle to form solid-like gels at the microscale; 3) cross-link between compartments at the macroscale to rigidify the entire assembly. Ultimately, this project will provide the quantitative knowledge base and modular design criteria to accelerate the assembly and use of compartmentalized tissue-like materials that are multifunctional, stimuli-responsive, adaptable, tough, and operate outside of equilibrium.This project is co-funded by the Division of Civil, Mechanical and Manufacturing Innovation in the Directorate for Engineering and the Division of Materials Research in the Directorate for Mathematical and Physical Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在自然界中,活细胞结合起来形成能够集体行为的组织,例如感应和响应外部提示,通信,分类和储存化学物种,并适应其机械性能以维持必要的负载。生物组织获得了这些理想的特性,因为对单个细胞的内容,排列和互连进行了仔细的控制,这种方法可产生具有高度适应性,响应能力和可调机械强度的层次材料。在合成材料中复制这些类型的新兴特性仍然是一个主要的工程挑战。这种设计材料彻底改变和设计我们的未来(DMREF)奖支持模仿生物组织的组成,组织和特性的材料系统的基础研究和科学开发。具有精确组成和空间布置的组织样材料的计算LED设计,试图为人工组织置换,伤口愈合,软机器人技术和嵌入式计算技术提供可推广的解决方案。 In addition, the project will support the technical and professional development of the STEM workforce by promoting the participation of high school, undergraduate, and graduate students, especially from the first-generation and underrepresented groups, through various outreach and research activities.This project aims to study synthetic tissues comprised of independent cell-like compartments coupled hierarchically through mechanical tethering (i.e., self-assembling block copolymer microgels (BCP)作为合成细胞骨架)和选择性转运(即,蛋白质含有蛋白质的仿生膜(BMS)作为选择性屏障)机制,并将刺激性反应性(例如,通过聚合物和膜蛋白质和膜蛋白)融合到室室中。计算方法结合了BCP的分子传输,刺激响应性的耦合变形,分阶粘附和生物膜力学,以预测组织样组件的失败行为,新兴特性和功能。理论,计算,BCP的合成,3D生物打印和微观机械表征之间的迭代反馈回路对于验证预测,告知模型开发和创建模块化数据库的项目至关重要。通过理解BCPS的可调疏水性和可调疏水性和亲水性区域的方式,可以实现通过脂质和蛋白质基于蛋白质的BM和可调机械性能的隔室化材料系统的构建:1) 2)自组装和纠缠以在微观上形成固体凝胶; 3)宏观上隔室之间的交联,以固定整个组件。最终,该项目将提供定量的知识库和模块化设计标准,以加速隔室的组织样材料的组装和使用,这些材料具有多功能,刺激性,适应性,强大的,强大的且在均衡之外运行。该项目是由民用,机械和制造工程局局部和工程局局局部和工程局共同构成的,并在工程局中共同构建,并在机械,机械和工程局中进行了工程,并进行了工程局,并进行了工程局,并进行了Engrionering和Engrionering的局部工程,并进行了工程局,并且该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响审查标准评估值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Homogeneous hybrid droplet interface bilayers assembled from binary mixtures of DPhPC phospholipids and PB-b-PEO diblock copolymers
  • DOI:
    10.1016/j.bbamem.2022.183997
  • 发表时间:
    2022-10-01
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Koner,Subhadeep;Tawfik,Joseph;Sarles,Stephen A.
  • 通讯作者:
    Sarles,Stephen A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Sarles其他文献

Stephen Sarles的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Sarles', 18)}}的其他基金

CAREER: Revealing the fundamental interactions of cell-penetrating nanoparticles in a complex model membrane
职业:揭示复杂模型膜中细胞穿透纳米颗粒的基本相互作用
  • 批准号:
    1752197
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
在线医疗团队协作模式与绩效提升策略研究
  • 批准号:
    72371111
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
  • 批准号:
    62373044
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
  • 批准号:
    82372548
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
  • 批准号:
    32302064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了