SpecEES: Collaborative Research: Spatially Oversampled Dense Multi-Beam Millimeter-Wave Communications for Exponentially Increased Energy-Efficiency

SpecEES:协作研究:空间过采样密集多波束毫米波通信,以指数方式提高能源效率

基本信息

  • 批准号:
    1730946
  • 负责人:
  • 金额:
    $ 18.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-15 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

The vast amount of spectrum available in the millimeter-wave (mmW) bands offer a path for exponential growth in data rates for wireless communications networks. In emerging systems such as fifth-generation (5G) networks, the use of mmW frequencies will potentially enable unprecedented improvements in network capacity, mobility, and spectral efficiency. However, the exploitation of mmW bands requires solutions to many technical challenges. In particular, the technology limitations present in today's implementations require new paradigms in algorithms, signal processing methods, circuit architectures, and integration methods in order for 5G wireless to become a reality. For example, there is a need for advanced channel models that let designers implement the wireless network infrastructure of the future. There is also a need for new algorithms, software, hardware, and electronic circuits for efficient mmW antenna array processing. This project will exploit well-known physics arising from Einstein's Special Theory of Relativity, namely the causality light-cone, to significantly improve the performance of key array signal processing components in mmW wireless basestations. Specifically, the spatio-temporal properties of electromagnetic waves, as described by Special Relativity, are exploited in novel architectures to improve the energy efficiency, reduce the noise, and improve the linearity of array receivers. A system-wide study of spatio-temporal properties of mmW channels is combined with these architectures to design new types of mmW array receivers and optimum beam forming algorithms. The Special Theory of Relativity describes a region in the multidimensional spacetime continuum that is not occupied by propagating waves due to the constant speed of light and the nature of the wave equation. As a result, the region of support (ROS) of all propagating waves, which correspond to wireless propagation channels, are confined inside a ``Light Cone''. The region of spacetime outside this cone (known as ``Elsewhere'') is a void within which wireless communications signals cannot propagate. Although devoid of waves, the Elsewhere is occupied by both electronic noise and nonlinear distortion arising from real-world amplifiers and data converters. The project explores the possibility of spatially over-sampling the mmW antenna arrays and thereafter applying multidimensional extensions of well-known sigma-delta modulation techniques across both discrete space and continuous-time dimensions to achieve noise and distortion shaping, which effectively move the unwanted received components into Elsewhere. Although sigma-delta algorithms have been employed in analog-to-digital converters (ADCs), it is here proposed that multidimensional extensions of these algorithms are not limited to just ADCs; rather, it is possible to apply these algorithms to low-noise amplifiers, ADCs and other circuit components used in arrays, which in turn leads to the creation of new concepts in multi-dimensional circuit theory for array processing. The technique is expected to lead to improved amplifier noise figure and linearity and exponentially improved ADC figure-of-merit for array digitization at a linear cost in the number of antennas and receivers. The resulting mmW array processors have applications in wireless communications, phased-array radar, and radio telescope antenna apertures. The project is a multi-institutional collaboration between four universities in Ohio and New York, and has multiple education and community outreach activities, which will be implemented via the annual Brooklyn 5G Summit. The project includes mentoring for female engineers and students, development of new educational material, and engagement of underrepresented groups in wireless communications topics. Outreach will be achieved through community activities, workshops, the Brooklyn 5G Summit including events for women in 5G, and scientific outreach and academic events organized within IEEE conferences. The mmW circuits research and education program combines theory with hands-on system prototyping. Industry engagement, which is critically important for emerging wireless technologies, is planned throughout the project, and facilitated via the annual Brooklyn 5G Summit. Open source models, designs and prototype chips will be offered to the public and wireless industry.
毫米波(mmW)频带中可用的大量频谱为无线通信网络的数据速率的指数增长提供了途径。在第五代(5G)网络等新兴系统中,毫米波频率的使用可能会在网络容量、移动性和频谱效率方面实现前所未有的改进。然而,毫米波频段的开发需要解决许多技术挑战。特别是,当今实现中存在的技术限制需要算法、信号处理方法、电路架构和集成方法的新范例,以便使5G无线成为现实。例如,需要高级信道模型,以便设计人员实现未来的无线网络基础设施。还需要用于高效mmW天线阵列处理的新算法、软件、硬件和电子电路。该项目将利用爱因斯坦的狭义相对论中的著名物理学,即因果光锥,以显着提高毫米波无线基站中关键阵列信号处理组件的性能。具体而言,电磁波的时空特性,如狭义相对论所描述的,被利用在新的架构中,以提高能量效率,降低噪声,并提高阵列接收器的线性度。毫米波信道的时空特性的系统范围内的研究相结合,这些架构,设计新型的毫米波阵列接收机和最佳波束形成算法。狭义相对论描述了多维时空连续体中的一个区域,由于光速恒定和波动方程的性质,该区域不被传播波占据。结果,所有传播波的支持区域(ROS),对应于无线传播信道,被限制在“光锥”内。这个圆锥之外的时空区域(称为“别处”)是一个空洞,无线通信信号无法在其中传播。虽然没有波,但Elsewhere被电子噪声和现实世界放大器和数据转换器产生的非线性失真所占据。该项目探索了对毫米波天线阵列进行空间过采样的可能性,然后在离散空间和连续时间维度上应用众所周知的Σ-Δ调制技术的多维扩展,以实现噪声和失真整形,从而有效地将不需要的接收分量移动到其他地方。 虽然Σ-Δ算法已被用于模数转换器(ADC)中,但这里提出,这些算法的多维扩展不限于ADC;相反,可以将这些算法应用于低噪声放大器、ADC和阵列中使用的其他电路元件,这反过来又导致在用于阵列处理的多维电路理论中创建新概念。该技术预计将导致改善放大器的噪声系数和线性度和指数改善ADC的品质因数阵列数字化的天线和接收机的数量在线性成本。由此产生的毫米波阵列处理器在无线通信,相控阵雷达和射电望远镜天线孔径的应用。该项目是俄亥俄州和纽约的四所大学之间的多机构合作,并有多种教育和社区外展活动,将通过年度布鲁克林5G峰会实施。该项目包括为女工程师和女学生提供指导,编写新的教材,以及让代表性不足的群体参与无线通信主题。将通过社群活动、研讨会、布鲁克林5G峰会(包括5G中的女性活动)以及IEEE会议内组织的科学推广和学术活动来实现推广。mmW电路研究和教育计划将理论与实践系统原型相结合。行业参与对于新兴无线技术至关重要,整个项目都在规划中,并通过年度布鲁克林5G峰会促进。开源模型,设计和原型芯片将提供给公众和无线行业。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Software-defined Radios to Accelerate mmWave Wireless Innovation
软件定义无线电加速毫米波无线创新
  • DOI:
    10.1109/dyspan.2019.8935877
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zheng, Kai;Jornet, Josep;Polese, Michele;Zorzi, Michele;Buckwalter, Jim;Rodwell, Mark;Mandal, Soumyajit;Wang, Xin;Haarla, Jaakko;Semkin, Vasilii
  • 通讯作者:
    Semkin, Vasilii
Improving ADC figure-of-merit in wideband antenna array receivers using multidimensional space-time delta-sigma multiport circuits
A Broadband Multistage Self-Interference Canceller for Full-Duplex MIMO Radios
32-Element Array Receiver for 2-D Spatio-Temporal Δ-Σ Noise-Shaping
用于 2-D 时空 α-β 噪声整形的 32 元件阵列接收器
Low-complexity N-port ADCs using 2-D Δ-Σ noise-shaping for N-element array receivers
针对 N 元件阵列接收器使用 2D α-β 噪声整形的低复杂度 N 端口 ADC
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Soumyajit Mandal其他文献

An ultra-broadband low-frequency magnetic resonance system.
超宽带低频磁共振系统。
$$\varvec{\varDelta }$$ – $$\varvec{\varSigma }$$ noise-shaping in 3-D space–time for 2-D wideband antenna array receivers
  • DOI:
    10.1007/s11045-018-0620-2
  • 发表时间:
    2018-10-19
  • 期刊:
  • 影响因子:
    1.800
  • 作者:
    Yingying Wang;Jifu Liang;Leonid Belostotski;Arjuna Madanayake;Soumyajit Mandal
  • 通讯作者:
    Soumyajit Mandal
Study of vortex dynamics in an a-MoGe thin film using low-frequency two-coil mutual inductance measurements
使用低频双线圈互感测量研究 a-MoGe 薄膜中的涡流动力学
  • DOI:
    10.1088/1361-6668/aca62c
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Soumyajit Mandal;Somak Basistha;J. Jesudasan;V. Bagwe;P. Raychaudhuri
  • 通讯作者:
    P. Raychaudhuri
Demonstration of Artificial Spin States Using Sub-Harmonic Injection Locking in AlN-on-Si Length-Extensional Mode MEMS Self-Sustaining Oscillator
在 AlN-on-Si 长度延伸模式 MEMS 自持振荡器中使用次谐波注入锁定的人工自旋态演示
Evidence of quantum vortex fluid in the mixed state of a very weakly pinned a-MoGe thin film
非常弱钉扎的 a-MoGe 薄膜混合态中量子涡流流体的证据
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Surajit Dutta;I. Roy;Soumyajit Mandal;Somak Basistha;J. Jesudasan;V. Bagwe;P. Raychaudhuri
  • 通讯作者:
    P. Raychaudhuri

Soumyajit Mandal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Soumyajit Mandal', 18)}}的其他基金

Collaborative Research: Distributed Electro-Mechanical Transmitters for Adaptive and Power-Efficient Wireless Communications in RF-Denied Environments
合作研究:分布式机电发射器,用于射频干扰环境中的自适应和高能效无线通信
  • 批准号:
    1907582
  • 财政年份:
    2019
  • 资助金额:
    $ 18.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Wideband Multi-Beam Antenna Arrays: Low-Complexity Algorithms and Analog-CMOS Implementations
合作研究:宽带多波束天线阵列:低复杂度算法和模拟 CMOS 实现
  • 批准号:
    1711395
  • 财政年份:
    2017
  • 资助金额:
    $ 18.75万
  • 项目类别:
    Standard Grant
SHF: Medium: Collaborative Research:Materials authentication using nuclear quadrupole resonance spectroscopy
SHF:媒介:合作研究:使用核四极共振光谱进行材料鉴定
  • 批准号:
    1563688
  • 财政年份:
    2016
  • 资助金额:
    $ 18.75万
  • 项目类别:
    Continuing Grant
CI-P: Collaborative Project: Massively-Parallel Analog Co-Processors for Simulating Complex Systems
CI-P:协作项目:用于模拟复杂系统的大规模并行模拟协处理器
  • 批准号:
    1629790
  • 财政年份:
    2016
  • 资助金额:
    $ 18.75万
  • 项目类别:
    Standard Grant
SHF: Small: Bio-inspired ultra-broadband RF scene analysis
SHF:小型:仿生超宽带射频场景分析
  • 批准号:
    1525162
  • 财政年份:
    2015
  • 资助金额:
    $ 18.75万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: SpecEES: Designing A Spectrally Efficient and Energy Efficient Data Aided Demand Driven Elastic Architecture for future Networks (SpiderNET)
合作研究:SpecEES:为未来网络设计频谱效率高、能源效率高的数据辅助需求驱动弹性架构 (SpiderNET)
  • 批准号:
    2323300
  • 财政年份:
    2023
  • 资助金额:
    $ 18.75万
  • 项目类别:
    Standard Grant
RUI: SpecEES: Collaborative Research: Enabling Secure, Energy-Efficient, and Smart In-Band Full Duplex Wireless
RUI:SpecEES:协作研究:实现安全、节能和智能的带内全双工无线
  • 批准号:
    2300955
  • 财政年份:
    2022
  • 资助金额:
    $ 18.75万
  • 项目类别:
    Standard Grant
RUI: SpecEES: Collaborative Research: Enabling Secure, Energy-Efficient, and Smart In-Band Full Duplex Wireless
RUI:SpecEES:协作研究:实现安全、节能和智能的带内全双工无线
  • 批准号:
    2109971
  • 财政年份:
    2020
  • 资助金额:
    $ 18.75万
  • 项目类别:
    Standard Grant
Collaborative Research: SpecEES: Towards Energy and Spectrally Efficient Millimeter Wave MIMO Platforms - A Unified System, Circuits, and Machine Learning Framework
合作研究:SpecEES:迈向能源和频谱高效的毫米波 MIMO 平台 - 统一的系统、电路和机器学习框架
  • 批准号:
    2116498
  • 财政年份:
    2020
  • 资助金额:
    $ 18.75万
  • 项目类别:
    Standard Grant
SpecEES: Collaborative Research: DroTerNet: Coexistence between Drone and Terrestrial Wireless Networks
SpecEES:协作研究:DroTerNet:无人机与地面无线网络的共存
  • 批准号:
    1923601
  • 财政年份:
    2019
  • 资助金额:
    $ 18.75万
  • 项目类别:
    Standard Grant
Collaborative Research: SpecEES: Towards Energy and Spectrally Efficient Millimeter Wave MIMO Platforms - A Unified System, Circuits, and Machine Learning Framework
合作研究:SpecEES:迈向能源和频谱高效的毫米波 MIMO 平台 - 统一的系统、电路和机器学习框架
  • 批准号:
    1923676
  • 财政年份:
    2019
  • 资助金额:
    $ 18.75万
  • 项目类别:
    Standard Grant
RUI: SpecEES: Collaborative Research: Enabling Secure, Energy-Efficient, and Smart In-Band Full Duplex Wireless
RUI:SpecEES:协作研究:实现安全、节能和智能的带内全双工无线
  • 批准号:
    1923712
  • 财政年份:
    2019
  • 资助金额:
    $ 18.75万
  • 项目类别:
    Standard Grant
Collaborative Research: SpecEES: Towards Energy and Spectrally Efficient Millimeter Wave MIMO Platforms - A Unified System, Circuits, and Machine Learning Framework
合作研究:SpecEES:迈向能源和频谱高效的毫米波 MIMO 平台 - 统一的系统、电路和机器学习框架
  • 批准号:
    1923858
  • 财政年份:
    2019
  • 资助金额:
    $ 18.75万
  • 项目类别:
    Standard Grant
RUI: SpecEES: Collaborative Research: Enabling Secure, Energy-Efficient, and Smart In-Band Full Duplex Wireless
RUI:SpecEES:协作研究:实现安全、节能和智能的带内全双工无线
  • 批准号:
    1923409
  • 财政年份:
    2019
  • 资助金额:
    $ 18.75万
  • 项目类别:
    Standard Grant
SpecEES: Collaborative Research: DroTerNet: Coexistence between Drone and Terrestrial Wireless Networks
SpecEES:协作研究:DroTerNet:无人机与地面无线网络的共存
  • 批准号:
    1923807
  • 财政年份:
    2019
  • 资助金额:
    $ 18.75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了