Collaborative Research: A Novel Control Strategy for 3D Printing of Micro-Scale Devices

协作研究:微型设备 3D 打印的新型控制策略

基本信息

  • 批准号:
    1737688
  • 负责人:
  • 金额:
    $ 5.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

Additive manufacturing systems, often called 3D printers, are poised to displace conventional manufacturing operations in many meso-scale applications (parts from 1 to 100 millimeters in size). Similarly, 3D printing at the micro-scale (from 0.001 to 0.1 millimeters in size) has the potential to revolutionize the way that biological and chemical sensors and integrated circuits are prototyped and manufactured. 3D printers build up complex parts by depositing one thin layer of material at a time. Electrohydrodynamic jet, or e-jet, printing is a promising micro-scale version of this process. This project will add sensors to a standard e-jet printer, and apply an innovative control law to greatly improve the precision of the resulting parts. The control law is based on the observation that 3D printed features typically change very little from one layer to the next. By observing how a layer deviates from its desired shape, the baseline e-jet control can be modified to improve the accuracy of the next layer. In this project, an atomic force microscope will be integrated with an e-jet printer to measure the shape of each layer. To better correct the printing process, the electric field around each layer will also be measured. The technical research plan is integrated with educational outreach to initiate undergraduate "micro-maker" clubs and catalyze an open-source, bottom-up movement based on inexpensive ink-jet printing of custom microcircuits and sensors.Micro-scale Additive Manufacturing, and in particular, electrohydrodynamic jet printing, has the potential to revolutionize 3D, functional, micro-scale device fabrication. Limiting this step change in manufacturing capabilities is the reliance of micro-scale Additive Manufacturing systems on a process monitoring, regulation, and quality control paradigm that is performed post-process and in an ad hoc manner. This research will break this open-loop paradigm by generating fundamental scientific knowledge in two areas: 1) the synthesis of a controls theoretic framework to compensate for spatial disturbances with a robust and computationally efficient learning-based algorithm and 2) the study of interactions between charged jets of materials and substrates in electrohydrodynamic jet printing using first principles physics models and validated by empirical studies leveraging a novel integration of electrohydrodynamic jet printing and atomic force microscopy. This research will contribute the fundamental knowledge required to transform 3D micro-scale Additive Manufacturing from a nascent, open-loop and ad hoc technology set to a fully automated, accurate, and robust closed-loop system.
增材制造系统,通常被称为3D打印机,有望在许多中型应用(尺寸从1到100毫米的零件)中取代传统的制造操作。同样,微尺度(尺寸从0.001到0.1毫米)的3D打印有可能彻底改变生物和化学传感器以及集成电路的原型和制造方式。3D打印机通过一次沉积一层薄薄的材料来构建复杂的部件。电流体动力学喷射或电子喷射印刷是这种工艺的一种有前途的微尺度版本。该项目将为标准的电子喷墨打印机添加传感器,并应用创新的控制律,以大大提高最终零件的精度。控制律是基于这样的观察,即3D打印的特征通常从一层到下一层变化很小。通过观察一个层如何偏离其期望的形状,可以修改基线电子喷射控制以提高下一层的精度。在这个项目中,原子力显微镜将与电子喷射打印机集成,以测量每层的形状。为了更好地校正印刷过程,还将测量每层周围的电场。该技术研究计划与教育推广相结合,旨在发起本科生“微型制造者”俱乐部,并促进基于定制微电路和传感器的廉价喷墨打印的开源、自下而上的运动。微尺度增材制造,特别是电流体动力学喷射打印,有可能彻底改变3D、功能性、微尺度设备制造。限制制造能力的这种阶跃变化的是微尺度增材制造系统对过程监测、调节和质量控制范例的依赖,该过程监测、调节和质量控制范例是在过程后以特定方式执行的。这项研究将通过在两个领域产生基础科学知识来打破这种开环范式:1)控制理论框架的合成,以利用鲁棒且计算高效的基于学习的算法来补偿空间干扰,以及2)利用第一原理物理模型研究电流体动力学喷射印刷中材料的带电射流与基底之间的相互作用,并通过利用电流体动力学喷射打印和原子力显微镜的新集成。这项研究将有助于将3D微尺度增材制造从一个新生的,开环和特设的技术集转变为一个完全自动化,准确和强大的闭环系统所需的基础知识。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Hoelzle其他文献

A curved electrode electrostatic actuator designed for large displacement and force in an underwater environment
一种弯曲电极静电致动器,专为水下环境中的大位移和大力而设计
A large displacement, high frequency, underwater microelectromechanical systems actuator
一种大位移、高频、水下微机电系统执行器
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Hoelzle;Clara K. Chan;Michael B Scott;Melinda A. Lake;A. Rowat
  • 通讯作者:
    A. Rowat
Flexible adaptation of iterative learning control with applications to synthetic bone graft manufacturing
迭代学习控制的灵活适应及其在合成骨移植制造中的应用
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Hoelzle
  • 通讯作者:
    David Hoelzle
A regulated environment for micro-organs defines essential conditions for intercellular Ca2+ waves
微器官的调节环境定义了细胞间 Ca2 波的必要条件
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Narciso;N. M. Contento;T. J. Storey;David Hoelzle;J. Zartman
  • 通讯作者:
    J. Zartman
Reliability Guidelines and Flowrate Modulation for a Micro Robotic Deposition System
微型机器人沉积系统的可靠性指南和流量调制
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Hoelzle
  • 通讯作者:
    David Hoelzle

David Hoelzle的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Hoelzle', 18)}}的其他基金

PFI-RP: Materials and surgical characterization for minimally invasive additive manufacturing of synthetic tissues inside the body
PFI-RP:体内合成组织微创增材制造的材料和手术表征
  • 批准号:
    1919204
  • 财政年份:
    2019
  • 资助金额:
    $ 5.52万
  • 项目类别:
    Standard Grant
SNM: Manufacturing Autonomy for Directed Evolution of Materials (MADE-Materials) for Robust, Scalable Nanomanufacturing
SNM:材料定向进化(MADE-Materials)的制造自主权,实现稳健、可扩展的纳米制造
  • 批准号:
    1727894
  • 财政年份:
    2017
  • 资助金额:
    $ 5.52万
  • 项目类别:
    Standard Grant
CAREER: Manufacturing Tools for the Next Generation of Tissue Engineering, Manufacturing Education for the Next Generation of Engineers
职业:下一代组织工程的制造工具、下一代工程师的制造教育
  • 批准号:
    1552358
  • 财政年份:
    2016
  • 资助金额:
    $ 5.52万
  • 项目类别:
    Standard Grant
CAREER: Manufacturing Tools for the Next Generation of Tissue Engineering, Manufacturing Education for the Next Generation of Engineers
职业:下一代组织工程的制造工具、下一代工程师的制造教育
  • 批准号:
    1708819
  • 财政年份:
    2016
  • 资助金额:
    $ 5.52万
  • 项目类别:
    Standard Grant
Collaborative Research: A Novel Control Strategy for 3D Printing of Micro-Scale Devices
协作研究:微型设备 3D 打印的新型控制策略
  • 批准号:
    1434660
  • 财政年份:
    2014
  • 资助金额:
    $ 5.52万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
  • 批准号:
    2347992
  • 财政年份:
    2024
  • 资助金额:
    $ 5.52万
  • 项目类别:
    Standard Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
  • 批准号:
    2347991
  • 财政年份:
    2024
  • 资助金额:
    $ 5.52万
  • 项目类别:
    Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
  • 批准号:
    2346198
  • 财政年份:
    2024
  • 资助金额:
    $ 5.52万
  • 项目类别:
    Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
  • 批准号:
    2346197
  • 财政年份:
    2024
  • 资助金额:
    $ 5.52万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
  • 批准号:
    2312872
  • 财政年份:
    2023
  • 资助金额:
    $ 5.52万
  • 项目类别:
    Standard Grant
Collaborative Research: Enhanced Photolysis and Advanced Oxidation Processes by Novel KrCl* (222 nm) Irradiation
合作研究:通过新型 KrCl* (222 nm) 辐照增强光解和高级氧化过程
  • 批准号:
    2310137
  • 财政年份:
    2023
  • 资助金额:
    $ 5.52万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
  • 批准号:
    2324033
  • 财政年份:
    2023
  • 资助金额:
    $ 5.52万
  • 项目类别:
    Standard Grant
Collaborative Research: IHBEM: The fear of here: Integrating place-based travel behavior and detection into novel infectious disease models
合作研究:IHBEM:这里的恐惧:将基于地点的旅行行为和检测整合到新型传染病模型中
  • 批准号:
    2327797
  • 财政年份:
    2023
  • 资助金额:
    $ 5.52万
  • 项目类别:
    Continuing Grant
Collaborative Research: Applying a novel approach to link microbial growth efficiency, function and energy transfer in the ocean
合作研究:应用一种新方法将海洋中微生物的生长效率、功能和能量转移联系起来
  • 批准号:
    2219796
  • 财政年份:
    2023
  • 资助金额:
    $ 5.52万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 5.52万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了