SI2-SSE: An Ecosystem of Reusable Image Analytics Pipelines

SI2-SSE:可重用图像分析管道生态系统

基本信息

  • 批准号:
    1739419
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Astronomy has entered an era of massive data streams generated by telescopes and surveys that can scan tens of thousands of square degrees of the sky across many decades of the electromagnetic spectrum. The promise of these new experiments - characterizing the nature of dark energy and the composition of dark matter, discovering the most energetic events in the universe, tracking asteroids whose orbits may intersect with that of the Earth - will only be realized if we can address the challenge of how to process and analyze the tens of petabytes of images that these astronomical surveys will generate per year.  With the increasing capacity for scientists to collect ever larger sets of data, often in the form of images, our potential for scientific discovery will soon be limited not by how we collect or store data, but rather how we extract the knowledge that these data contain (e.g. how we account for noise inherent within the data, and understand when we have detected fundamentally new classes and interesting events or physical phenomena).  This project is to develop an open source scalable framework for the analysis of large imaging data sets. It is designed to operate as a cloud service, incorporate seamlessly new or legacy image processing algorithms, support and optimize complex analysis workflows, and scale analyses to thousands of processors without the need for an individual user to develop custom solutions for a specific computer platforms or architecture. This framework will be integrated with state-of-the-art image analysis algorithms developed for astronomical surveys  to provide an image analytics platform that can be used by future telescopes and cameras and the astronomical community as a whole. Beyond astronomy, the framework will be extended to enable scientists from the physical and life sciences that make use of imaging data (e.g. neuroscience, oceanography, biology, seismology) to focus their work on developing scientific algorithms and analyses rather than the infrastructure required to process massive data setsOver the last decade, there have been many advancements in astronomical image analysis algorithms and techniques; driven by new surveys and experiments. The complexity of these techniques and the systems that run them has, however, meant that the number of users who make use of these advancements is small; typically restricted to the experiments themselves or to a small group of expert users. Because of this, the community as a whole does not benefit from the significant investment in image analytics for astronomy.  In this project, the PIs address these issues by developing and deploying a scalable framework for the analysis of small and large imaging datasets. This cloud-based system will be able to incorporate new and legacy image processing algorithms, support and optimize complex analysis workflows, scale applications to thousands of processors without users needing to develop custom code for specific platforms, and support efficient sharing of algorithms and analysis results among users. It will enable state-of-the-art image analysis algorithms (e.g. those developed for surveys such as the Large Synoptic Survey Telescope; LSST) to be used by the broad astronomical community and in so doing will leverage then tens of thousands of hours that has been invested in the development of these techniques. To accomplish this the team will extract key data analysis functions from the LSST data analysis pipeline into a standalone library, independent of the LSST software stack and data access mechanisms.  They will integrate this library with the Myria big data management system. Myria is an elastically scalable big data management system that operates as a service in the Amazon cloud that wedeveloped at the University of Washington. Compared with other big data systems, Myria is especially attractive because it integrates PostgreSQL database instances within its storage layer and thus provides access to PostgreSQL's rich libraries of spatial functions, which are frequently used in astronomical data analysis pipelines. At the same time, it has rich support for new and legacy Python code and for complex analytics. By integrating the library of LSST image analytics functions with Myria, new image analytics pipelines will become significantly easier to write. The skeleton of the analysis pipeline will be expressed in the MyriaL declarative query language (i.e. SQL extended with constructs such as iterations and others). The core data processing functions will directly map to Python functions, enabling the reuse of legacy code and the easy addition of new functions. The resulting code will be amenable to optimization and efficient execution using the Myria service. By doing so, they intend to reduce barriers to adoption. Users will be able to express their analysis in Python without worrying about how data and computation will be distributed in a cluster.  The image analysis framework developed as part of this proposal will be made publicly available as open-source software. The PIs will utilize the use case of neuroscience to demonstrate how their system, developed for astronomy, can be deployed across multiple domains.This project is supported by the Office of Advanced Cyberinfrastructure in the Directorate for Computer & Information Science and Engineering, the Astronomical Sciences Division and Office of Multidisciplinary Activities in the Directorate of Mathematical and Physical Sciences.
天文学已经进入了一个由望远镜和调查产生的大量数据流的时代,这些数据流可以在几十年的电磁频谱中扫描数万平方度的天空。这些新实验的承诺-表征暗能量的性质和暗物质的组成,发现宇宙中最具活力的事件,跟踪轨道可能与地球相交的小行星-只有当我们能够解决如何处理和分析这些天文调查每年将产生的数十PB图像的挑战时才能实现。 随着科学家收集更大数据集(通常以图像形式)的能力不断提高,我们的科学发现潜力很快将不再受到如何收集或存储数据的限制,而是受到如何提取这些数据所包含的知识的限制。(例如,我们如何解释数据中固有的噪声,以及何时发现了全新的类别和有趣的事件或物理现象)。 该项目旨在开发一个开源的可扩展框架,用于分析大型成像数据集。它旨在作为云服务运行,无缝整合新的或传统的图像处理算法,支持和优化复杂的分析工作流程,并将分析扩展到数千个处理器,而无需单个用户为特定的计算机平台或架构开发定制解决方案。该框架将与为天文测量开发的最先进的图像分析算法相结合,以提供一个可供未来望远镜和相机以及整个天文学界使用的图像分析平台。除了天文学之外,该框架还将扩展到使物理和生命科学的科学家能够利用成像数据(如神经科学、海洋学、生物学、地震学)将工作重点放在开发科学算法和分析上,而不是处理大量数据集所需的基础设施上。由新的调查和实验驱动。然而,这些技术和运行它们的系统的复杂性意味着利用这些进步的用户数量很少;通常仅限于实验本身或一小群专家用户。正因为如此,整个社区并没有从天文学图像分析的重大投资中受益。 在该项目中,PI通过开发和部署用于分析小型和大型成像数据集的可扩展框架来解决这些问题。这个基于云的系统将能够整合新的和传统的图像处理算法,支持和优化复杂的分析工作流程,将应用程序扩展到数千个处理器,而无需用户为特定平台开发自定义代码,并支持用户之间高效共享算法和分析结果。它将使最先进的图像分析算法(例如,为大型综合巡天望远镜(LSST)等巡天而开发的算法)能够被广大的天文学界所使用,这样做将利用在开发这些技术方面投入的数万小时。为了实现这一目标,该团队将从LSST数据分析管道中提取关键数据分析功能到独立的库中,独立于LSST软件堆栈和数据访问机制。 他们将把这个图书馆与Myria大数据管理系统集成在一起。Myria是一个可弹性扩展的大数据管理系统,它作为我们在华盛顿大学开发的亚马逊云服务运行。与其他大数据系统相比,Myria特别有吸引力,因为它在其存储层中集成了PostgreSQL数据库实例,从而提供了对PostgreSQL丰富的空间函数库的访问,这些空间函数库经常用于天文数据分析管道。同时,它对新的和旧的Python代码以及复杂的分析提供了丰富的支持。通过将LSST图像分析函数库与Myria集成,新的图像分析管道将变得更加容易编写。分析管道的骨架将用MyriaL声明性查询语言(即,使用迭代等构造扩展的SQL)表示。核心数据处理函数将直接映射到Python函数,从而可以重用遗留代码并轻松添加新函数。生成的代码将易于使用Myria服务进行优化和高效执行。通过这样做,他们打算减少采用的障碍。用户将能够用Python表达他们的分析,而不用担心数据和计算将如何在集群中分布。 作为该提案一部分开发的图像分析框架将作为开放源码软件公开提供。PI将利用神经科学的用例来演示他们为天文学开发的系统如何在多个领域部署。该项目得到了计算机信息科学与工程局高级网络基础设施办公室、天文科学司和数学与物理科学局多学科活动办公室的支持。&

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sub-band Image Reconstruction Using Differential Chromatic Refraction
使用差分色折射的子带图像重建
  • DOI:
    10.3847/1538-3881/ab139f
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lee, Matthias A.;Budavári, Tamás;Sullivan, Ian S.;Connolly, Andrew J.
  • 通讯作者:
    Connolly, Andrew J.
Fast Algorithms for Slow Moving Asteroids: Constraints on the Distribution of Kuiper Belt Objects
  • DOI:
    10.3847/1538-3881/aafd2d
  • 发表时间:
    2019-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter J. Whidden;J. Kalmbach;A. Connolly;R. L. Jones;H. Smotherman;D. Bektešević;C. Slater;A. Becker;Ž. Ivezić;Mario Juri'c;B. Bolin;Joachim Moeyens;F. Förster;V. Golkhou
  • 通讯作者:
    Peter J. Whidden;J. Kalmbach;A. Connolly;R. L. Jones;H. Smotherman;D. Bektešević;C. Slater;A. Becker;Ž. Ivezić;Mario Juri'c;B. Bolin;Joachim Moeyens;F. Förster;V. Golkhou
Sifting through the Static: Moving Object Detection in Difference Images
筛选静态:差异图像中的运动物体检测
  • DOI:
    10.3847/1538-3881/ac22ff
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Smotherman, Hayden;Connolly, Andrew J.;Kalmbach, J. Bryce;Portillo, Stephen K.;Bektesevic, Dino;Eggl, Siegfried;Juric, Mario;Moeyens, Joachim;Whidden, Peter J.
  • 通讯作者:
    Whidden, Peter J.
Toward Sampling for Deep Learning Model Diagnosis
A Gateway to Astronomical Image Processing: Vera C. RubinObservatory LSST Science Pipelines on AWS
天文图像处理的门户:AWS 上的 Vera C. RubinObservatory LSST Science Pipelines
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bektesevic, Dino;Chiang, Hsin-Fang;Lim, Kian-Tat;Miller, Todd L.;Thain, Greg;Jenness, Tim;Bosch, James;Salnikov, Andrei;Connolly, Andrew
  • 通讯作者:
    Connolly, Andrew
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Connolly其他文献

CE-482906-002 A PHENOTYPE-FIRST APPROACH TO DETERMINE TOTAL COMMUNITY BURDEN OF HERITABLE SUDDEN DEATH: GENETIC TESTING AND FAMILIAL SCREENING IN UNSELECTED COUNTYWIDE SUDDEN DEATHS
CE-482906-002 一种表型优先的方法来确定遗传性猝死的总社区负担:在未选择的全县猝死中的基因检测和家族筛查
  • DOI:
    10.1016/j.hrthm.2024.03.280
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    James W. Salazar;Julianne Wojciak;Patrick Devine;Jean Feng;Brielle Kinkead;Andrew Connolly;Ellen Moffatt;Zian H. Tseng
  • 通讯作者:
    Zian H. Tseng
A molecular dynamics simulation study on the role of graphene in enhancing the arc erosion resistance of Cu metal matrix
  • DOI:
    10.1016/j.commatsci.2022.111549
  • 发表时间:
    2022-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ruoyu Xu;Mingyu Zhou;Xin Wang;Shanika Yasantha Matharage;Jiu Dun Yan;Andrew Connolly;Yi Luo;Yi Ding;Zhongdong Wang
  • 通讯作者:
    Zhongdong Wang
CE-499649-005 MYOCARDIAL INFARCTION WITH NONOBSTRUCTIVE CORONARY ARTERIES AND FIBROSIS BURDEN AMONG COMMUNITYWIDE SUDDEN CARDIAC DEATHS BY AUTOPSY
CE-499649-005 基于尸检的社区范围内心脏性猝死中非阻塞性冠状动脉和纤维化负荷的心肌梗死
  • DOI:
    10.1016/j.hrthm.2025.03.086
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Kosuke Nakasuka;Jakrin Kewcharoen;James W. Salazar;Brielle Kinkead;Jelix Tsan;Andrew Connolly;Ellen Moffatt;Zian H. Tseng
  • 通讯作者:
    Zian H. Tseng
PO-02-148 ACTIVITY LEVEL AND CAUSES OF SUDDEN DEATH: FROM THE POSTMORTEM SYSTEMATIC INVESTIGATION OF SUDDEN CARDIAC DEATH (POST SCD) STUDY
PO-02-148 猝死的活动水平和原因:来自猝死(SCD 后)研究的死后系统调查
  • DOI:
    10.1016/j.hrthm.2025.03.630
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Brielle Kinkead;Kosuke Nakasuka;Matthew Yee;David Eik;Jelix Tsan;Marwan M. Refaat;Orrin Devinsky;Andrew Connolly;Ellen Moffatt;Zian H. Tseng
  • 通讯作者:
    Zian H. Tseng
GIANT CELL MYOCARDITIS: A RARE CAUSE OF ACUTE HEART FAILURE
  • DOI:
    10.1016/s0735-1097(24)05616-x
  • 发表时间:
    2024-04-02
  • 期刊:
  • 影响因子:
  • 作者:
    Hilary C. Bowman;Pooja Prasad;Jason William Smith;Muhammad W. Choudhry;Andrew Connolly;Javid Moslehi;Liviu Klein;Teresa De Marco;Connor G. O'Brien
  • 通讯作者:
    Connor G. O'Brien

Andrew Connolly的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Connolly', 18)}}的其他基金

Probing the Outer Solar System: Searching Below the Noise
探测外太阳系:在噪音之下进行搜索
  • 批准号:
    2107800
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
AstroML: Machine Learning for Astrophysics
AstroML:天体物理学机器学习
  • 批准号:
    1715122
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Kernel-Based Moving Object Detection
基于内核的移动物体检测
  • 批准号:
    1409547
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Putting Astronomy's Head in the Cloud
将天文学的头脑置于云端
  • 批准号:
    0844580
  • 财政年份:
    2009
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
ITR: Searching for Correlations in a High Dimensional Space
ITR:在高维空间中搜索相关性
  • 批准号:
    0851007
  • 财政年份:
    2008
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
MSPA-AST:Image Coaddition, Subtraction and Source Detection in the Era of Terabyte Data Streams
MSPA-AST:TB级数据流时代的图像相加、相减和源检测
  • 批准号:
    0709394
  • 财政年份:
    2007
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
ITR: Searching for Correlations in a High Dimensional Space
ITR:在高维空间中搜索相关性
  • 批准号:
    0312498
  • 财政年份:
    2003
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER The Digital Sky: Bringing Cosmology into the Classroom
数字天空:将宇宙学带入课堂
  • 批准号:
    9984924
  • 财政年份:
    2000
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Tracing the Evolution of Galaxies
追踪星系的演化
  • 批准号:
    0096060
  • 财政年份:
    1999
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Tracing the Evolution of Galaxies
追踪星系的演化
  • 批准号:
    9802978
  • 财政年份:
    1998
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似国自然基金

化脓性链球菌分泌性酯酶Sse抑制LC3相关吞噬促其侵袭的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
太阳能电池Cu2ZnSn(SSe)4/CdS界面过渡层结构模拟及缺陷态消除研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
掺杂实现Cu2ZnSn(SSe)4吸收层表层稳定弱n型特性的第一性原理研究
  • 批准号:
    12004100
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于SSE的航空信息系统信息安全保障评价指标体系的研究
  • 批准号:
    60776808
  • 批准年份:
    2007
  • 资助金额:
    19.0 万元
  • 项目类别:
    联合基金项目

相似海外基金

異常検知手法と大気ノイズ補正を併用したInSAR時系列による未知のSSE検出手法の確立
利用异常检测方法和大气噪声校正建立利用InSAR时间序列的未知SSE检测方法
  • 批准号:
    24K07168
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study on vibration theory for defect detection by acoustic excitation using SSE analysis
基于SSE分析的声激励缺陷检测振动理论研究
  • 批准号:
    23K03995
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on defect detection by spatial spectral entropy (SSE) and healthy part evaluation for noncontact acoustic inspection
非接触声学检测中空间谱熵(SSE)缺陷检测和健康部位评估研究
  • 批准号:
    19K04414
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Numerical simulations of earthquake and SSE triggering by dynamic stress changes
动态应力变化引发地震和SSE的数值模拟
  • 批准号:
    18K03775
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NSCI: SI2-SSE: An Extensible Model to Support Scalable Checkpoint-Restart for DMTCP Across Multiple Disciplines
NSCI:SI2-SSE:支持跨多个学科的 DMTCP 可扩展检查点重启的可扩展模型
  • 批准号:
    1740218
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SI2-SSE: GenApp - A Transformative Generalized Application Cyberinfrastructure
SI2-SSE:GenApp - 变革性通用应用程序网络基础设施
  • 批准号:
    1912444
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SI2-SSE: A parallel computing framework for large-scale real-space and real-time TDDFT excited-states calculations
SI2-SSE:大规模实空间和实时 TDDFT 激发态计算的并行计算框架
  • 批准号:
    1739423
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SI2-SSE: WRENCH: A Simulation Workbench for Scientific Worflow Users, Developers, and Researchers
协作研究:SI2-SSE:WRENCH:面向科学 Worflow 用户、开发人员和研究人员的模拟工作台
  • 批准号:
    1642369
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SI2-SSE: Entangled Quantum Dynamics in Closed and Open Systems, an Open Source Software Package for Quantum Simulator Development and Exploration of Synthetic Quantum Matter
SI2-SSE:封闭和开放系统中的纠缠量子动力学,用于量子模拟器开发和合成量子物质探索的开源软件包
  • 批准号:
    1740130
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SI2-SSE: Highly Efficient and Scalable Software for Coarse-Grained Molecular Dynamics
SI2-SSE:高效且可扩展的粗粒度分子动力学软件
  • 批准号:
    1740211
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了