AstroML: Machine Learning for Astrophysics
AstroML:天体物理学机器学习
基本信息
- 批准号:1715122
- 负责人:
- 金额:$ 39.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Astronomy has entered an era of massive data streams, with catalogs containing hundreds of millions of stars and galaxies measured at thousands of time-steps with hundreds of attributes to be analyzed. To extract knowledge from these large and complex data sets we must account for noise and gaps, and understand if and when we may have detected a fundamentally new physical phenomenon. The problem is not solely the size of the data, but a basic question of how to discover, represent, visualize and interact with the knowledge that these data contain. Astronomical data provide a popular testbed for developing methods applicable throughout the physical and life sciences.astroML is an open source machine-learning library that addresses all of the challenges, providing a publicly available repository for fast python implementations of statistical routines for astronomy, as well as examples of astrophysical data analyses using techniques from statistics and machine learning. In the three years since its release, astroML has been installed over 21,000 times. The current project will further develop astroML into a general machine learning toolkit for the next generation of astrophysical surveys, adding code examples and tutorials, exploiting multicore and multiprocessing hardware, and supporting the second edition of the text "Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data". Algorithms to be developed include approximate Bayesian computation, hierarchical Bayes, an interface to deep learning algorithms, and modifying the regression and regularization code to account for uncertainties within the data.All developed algorithms will be publicly available, and astroML has already been used in cancer research and analysis of the securities market, and to teach data science in astronomy. The refactored code can be used to teach both the statistics and software engineering techniques needed for large scale machine learning.
天文学已经进入了一个大规模数据流的时代,目录包含数以亿计的恒星和星系,在数千个时间步测量,有数百个属性需要分析。 为了从这些庞大而复杂的数据集中提取知识,我们必须考虑噪音和差距,并了解我们是否以及何时可能检测到一种全新的物理现象。 问题不仅仅是数据的大小,而是如何发现、表示、可视化这些数据所包含的知识并与之交互的基本问题。 天文数据为开发适用于整个物理和生命科学的方法提供了一个受欢迎的测试平台。astroML是一个开源机器学习库,可以解决所有挑战,为天文学统计例程的快速Python实现提供了一个公开可用的存储库,以及使用统计和机器学习技术进行天体物理数据分析的示例。 自发布以来的三年中,astroML已被安装超过21,000次。 目前的项目将进一步开发astroML成为下一代天体物理调查的通用机器学习工具包,增加代码示例和教程,利用多核和多处理硬件,并支持第二版的文本“统计,数据挖掘和天文学机器学习:调查数据分析的实用Python指南”。 我们将开发的算法包括近似贝叶斯计算、分层贝叶斯、深度学习算法的接口,以及修改回归和正则化代码以考虑数据中的不确定性。所有开发的算法都将公开,astroML已经用于癌症研究和证券市场分析,并用于教授天文学中的数据科学。 重构后的代码可用于教授大规模机器学习所需的统计和软件工程技术。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The SunPy Project: Open Source Development and Status of the Version 1.0 Core Package
- DOI:10.3847/1538-4357/ab4f7a
- 发表时间:2020-02-10
- 期刊:
- 影响因子:4.9
- 作者:Barnes, Will T.;Bobra, Monica G.;Dang, Trung Kien
- 通讯作者:Dang, Trung Kien
Robust Period Estimation Using Mutual Information for Multiband Light Curves in the Synoptic Survey Era
- DOI:10.3847/1538-4365/aab77c
- 发表时间:2017-09
- 期刊:
- 影响因子:0
- 作者:P. Huijse;P. Estévez;F. Förster;S. Daniel;A. Connolly;P. Protopapas;R. Carrasco;J. Príncipe
- 通讯作者:P. Huijse;P. Estévez;F. Förster;S. Daniel;A. Connolly;P. Protopapas;R. Carrasco;J. Príncipe
Sifting through the Static: Moving Object Detection in Difference Images
筛选静态:差异图像中的运动物体检测
- DOI:10.3847/1538-3881/ac22ff
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Smotherman, Hayden;Connolly, Andrew J.;Kalmbach, J. Bryce;Portillo, Stephen K.;Bektesevic, Dino;Eggl, Siegfried;Juric, Mario;Moeyens, Joachim;Whidden, Peter J.
- 通讯作者:Whidden, Peter J.
Optimization of the Observing Cadence for the Rubin Observatory Legacy Survey of Space and Time: A Pioneering Process of Community-focused Experimental Design
鲁宾天文台遗产时空巡天观测节奏的优化:以社区为中心的实验设计的开创性过程
- DOI:10.3847/1538-4365/ac3e72
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Bianco, Federica B.;Ivezić, Željko;Jones, R. Lynne;Graham, Melissa L.;Marshall, Phil;Saha, Abhijit;Strauss, Michael A.;Yoachim, Peter;Ribeiro, Tiago;Anguita, Timo
- 通讯作者:Anguita, Timo
Dimensionality Reduction of SDSS Spectra with Variational Autoencoders
- DOI:10.3847/1538-3881/ab9644
- 发表时间:2020-02
- 期刊:
- 影响因子:0
- 作者:S. Portillo;J. Parejko;J. Vergara;A. Connolly
- 通讯作者:S. Portillo;J. Parejko;J. Vergara;A. Connolly
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Connolly其他文献
CE-482906-002 A PHENOTYPE-FIRST APPROACH TO DETERMINE TOTAL COMMUNITY BURDEN OF HERITABLE SUDDEN DEATH: GENETIC TESTING AND FAMILIAL SCREENING IN UNSELECTED COUNTYWIDE SUDDEN DEATHS
CE-482906-002 一种表型优先的方法来确定遗传性猝死的总社区负担:在未选择的全县猝死中的基因检测和家族筛查
- DOI:
10.1016/j.hrthm.2024.03.280 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:5.700
- 作者:
James W. Salazar;Julianne Wojciak;Patrick Devine;Jean Feng;Brielle Kinkead;Andrew Connolly;Ellen Moffatt;Zian H. Tseng - 通讯作者:
Zian H. Tseng
A molecular dynamics simulation study on the role of graphene in enhancing the arc erosion resistance of Cu metal matrix
- DOI:
10.1016/j.commatsci.2022.111549 - 发表时间:
2022-09-01 - 期刊:
- 影响因子:
- 作者:
Ruoyu Xu;Mingyu Zhou;Xin Wang;Shanika Yasantha Matharage;Jiu Dun Yan;Andrew Connolly;Yi Luo;Yi Ding;Zhongdong Wang - 通讯作者:
Zhongdong Wang
CE-499649-005 MYOCARDIAL INFARCTION WITH NONOBSTRUCTIVE CORONARY ARTERIES AND FIBROSIS BURDEN AMONG COMMUNITYWIDE SUDDEN CARDIAC DEATHS BY AUTOPSY
CE-499649-005 基于尸检的社区范围内心脏性猝死中非阻塞性冠状动脉和纤维化负荷的心肌梗死
- DOI:
10.1016/j.hrthm.2025.03.086 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:5.700
- 作者:
Kosuke Nakasuka;Jakrin Kewcharoen;James W. Salazar;Brielle Kinkead;Jelix Tsan;Andrew Connolly;Ellen Moffatt;Zian H. Tseng - 通讯作者:
Zian H. Tseng
PO-02-148 ACTIVITY LEVEL AND CAUSES OF SUDDEN DEATH: FROM THE POSTMORTEM SYSTEMATIC INVESTIGATION OF SUDDEN CARDIAC DEATH (POST SCD) STUDY
PO-02-148 猝死的活动水平和原因:来自猝死(SCD 后)研究的死后系统调查
- DOI:
10.1016/j.hrthm.2025.03.630 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:5.700
- 作者:
Brielle Kinkead;Kosuke Nakasuka;Matthew Yee;David Eik;Jelix Tsan;Marwan M. Refaat;Orrin Devinsky;Andrew Connolly;Ellen Moffatt;Zian H. Tseng - 通讯作者:
Zian H. Tseng
GIANT CELL MYOCARDITIS: A RARE CAUSE OF ACUTE HEART FAILURE
- DOI:
10.1016/s0735-1097(24)05616-x - 发表时间:
2024-04-02 - 期刊:
- 影响因子:
- 作者:
Hilary C. Bowman;Pooja Prasad;Jason William Smith;Muhammad W. Choudhry;Andrew Connolly;Javid Moslehi;Liviu Klein;Teresa De Marco;Connor G. O'Brien - 通讯作者:
Connor G. O'Brien
Andrew Connolly的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Connolly', 18)}}的其他基金
Probing the Outer Solar System: Searching Below the Noise
探测外太阳系:在噪音之下进行搜索
- 批准号:
2107800 - 财政年份:2021
- 资助金额:
$ 39.89万 - 项目类别:
Standard Grant
SI2-SSE: An Ecosystem of Reusable Image Analytics Pipelines
SI2-SSE:可重用图像分析管道生态系统
- 批准号:
1739419 - 财政年份:2017
- 资助金额:
$ 39.89万 - 项目类别:
Standard Grant
Kernel-Based Moving Object Detection
基于内核的移动物体检测
- 批准号:
1409547 - 财政年份:2014
- 资助金额:
$ 39.89万 - 项目类别:
Continuing Grant
Putting Astronomy's Head in the Cloud
将天文学的头脑置于云端
- 批准号:
0844580 - 财政年份:2009
- 资助金额:
$ 39.89万 - 项目类别:
Standard Grant
ITR: Searching for Correlations in a High Dimensional Space
ITR:在高维空间中搜索相关性
- 批准号:
0851007 - 财政年份:2008
- 资助金额:
$ 39.89万 - 项目类别:
Standard Grant
MSPA-AST:Image Coaddition, Subtraction and Source Detection in the Era of Terabyte Data Streams
MSPA-AST:TB级数据流时代的图像相加、相减和源检测
- 批准号:
0709394 - 财政年份:2007
- 资助金额:
$ 39.89万 - 项目类别:
Standard Grant
ITR: Searching for Correlations in a High Dimensional Space
ITR:在高维空间中搜索相关性
- 批准号:
0312498 - 财政年份:2003
- 资助金额:
$ 39.89万 - 项目类别:
Standard Grant
CAREER The Digital Sky: Bringing Cosmology into the Classroom
数字天空:将宇宙学带入课堂
- 批准号:
9984924 - 财政年份:2000
- 资助金额:
$ 39.89万 - 项目类别:
Continuing Grant
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 39.89万 - 项目类别:
Collaborative R&D
Quantum Machine Learning for Financial Data Streams
金融数据流的量子机器学习
- 批准号:
10073285 - 财政年份:2024
- 资助金额:
$ 39.89万 - 项目类别:
Feasibility Studies
Explainable machine learning for electrification of everything
可解释的机器学习,实现万物电气化
- 批准号:
LP230100439 - 财政年份:2024
- 资助金额:
$ 39.89万 - 项目类别:
Linkage Projects
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 39.89万 - 项目类别:
Research Grant
Machine Learning for Computational Water Treatment
用于计算水处理的机器学习
- 批准号:
EP/X033244/1 - 财政年份:2024
- 资助金额:
$ 39.89万 - 项目类别:
Research Grant
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
- 批准号:
2317681 - 财政年份:2024
- 资助金额:
$ 39.89万 - 项目类别:
Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
$ 39.89万 - 项目类别:
Standard Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 39.89万 - 项目类别:
Continuing Grant
CC* Campus Compute: UTEP Cyberinfrastructure for Scientific and Machine Learning Applications
CC* 校园计算:用于科学和机器学习应用的 UTEP 网络基础设施
- 批准号:
2346717 - 财政年份:2024
- 资助金额:
$ 39.89万 - 项目类别:
Standard Grant
Learning to create Intelligent Solutions with Machine Learning and Computer Vision: A Pathway to AI Careers for Diverse High School Students
学习利用机器学习和计算机视觉创建智能解决方案:多元化高中生的人工智能职业之路
- 批准号:
2342574 - 财政年份:2024
- 资助金额:
$ 39.89万 - 项目类别:
Standard Grant