SI2-SSE: Deep Forge: a Machine Learning Gateway for Scientific Workflow Design
SI2-SSE:Deep Forge:用于科学工作流程设计的机器学习网关
基本信息
- 批准号:1740151
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recent advances in machine learning have already had a transformative impact on our lives. However, astonishing successes in diverse domains, such as image classification, speech recognition, self-driving cars and natural language processing, have mostly been driven by commercial forces, and these techniques have not yet been widely transitioned into various science domains. The field is ripe for innovation since many science fields have readily available large-scale datasets, as well as access to public or private compute infrastructure capable of executing computationally expensive artificial neural network (ANN) training workflows. The main roadblocks seem to be the steep learning curve of the ANN tools, the accidental complexities of setting up and executing machine learning workflows, and the fact that finding the right deep neural network architecture requires significant experience and lots of experimentation. DeepForge overcomes these obstacles by providing an intuitive visual interface, a large library of reusable components and architectures as well as automatic software generation enabling domain scientist to experiment with ANNs in their own field. There is unmet high demand of talent in machine learning, exactly because it has so much potential in a wide variety of application areas. Therefore, any tool that helps scientists apply machine learning in their own domains will have a broad impact. The promise of DeepForge is to flatten the learning curve, hide low level unimportant details and provide components that are reusable within and across disciplines. Therefore, DeepForge will have transformative impact on a number of fields.DeepForge, a web- and cloud-based software infrastructure raises the abstraction of creating ANN workflows via an intuitive visual interface and by managing training artifacts. Hence, it enables domain scientists to leverage recent advances in machine learning. DeepForge will also integrate with existing cyberinfrastructure, including private and commercial compute clusters, cloud services (e.g. Amazon EC2), public supercomputing resources, and online repositories of scientific datasets. The DeepForge visual language for designing ANN architectures and workflows is powerful enough to capture the concepts related to common deep learning tasks, yet it provides a high level of abstraction that shields the users from the underlying complexity at the same time. DeepForge will provide a facility that allows for sharing design artifacts across a wide interdisciplinary user community. Curating a rich library of reusable components, integrating with a wide variety of existing cyberinfrastructure resources from data sources to compute platform and providing data provenance in a seamless manner are other advantages of the project. DeepForge will promote "data as product," "model as product," and "service as product" concepts through integration with the Digital Object Identifier (DOI) infrastructure. DeepForge will enable scientist to assign DOIs to their shared assets providing data provenance enabling citing and publicly reproducing research results by executing the referenced ANN workflows with the linked data artifacts.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习的最新进展已经对我们的生活产生了变革性的影响。然而,在图像分类、语音识别、自动驾驶汽车和自然语言处理等不同领域取得的惊人成功大多是由商业力量推动的,这些技术尚未广泛过渡到各个科学领域。该领域的创新时机已经成熟,因为许多科学领域都有现成的大规模数据集,并且可以访问能够执行计算昂贵的人工神经网络(ANN)训练工作流的公共或私人计算基础设施。主要的障碍似乎是人工神经网络工具的陡峭学习曲线,设置和执行机器学习工作流程的意外复杂性,以及找到正确的深度神经网络架构需要大量经验和大量实验。DeepForge克服了这些障碍,提供了一个直观的可视化界面,一个可重用组件和架构的大型库,以及自动软件生成,使领域科学家能够在自己的领域中试验人工神经网络。机器学习对人才的需求很高,因为它在各种应用领域都有很大的潜力。因此,任何帮助科学家在自己的领域应用机器学习的工具都将产生广泛的影响。DeepForge的承诺是使学习曲线变平,隐藏低级别的不重要的细节,并提供在学科内和跨学科可重用的组件。DeepForge是一个基于Web和云的软件基础设施,通过直观的可视化界面和管理训练工件,提高了创建ANN工作流的抽象性。因此,它使领域科学家能够利用机器学习的最新进展。DeepForge还将与现有的网络基础设施集成,包括私有和商业计算集群、云服务(例如Amazon EC2)、公共超级计算资源和科学数据集的在线存储库。用于设计ANN架构和工作流的DeepForge视觉语言足够强大,可以捕获与常见深度学习任务相关的概念,但它提供了高级别的抽象,同时使用户免受底层复杂性的影响。DeepForge将提供一个设施,允许在广泛的跨学科用户社区中共享设计工件。该项目的其他优势包括:管理丰富的可重用组件库,与各种现有的网络基础设施资源(从数据源到计算平台)集成,以及以无缝方式提供数据来源。DeepForge将通过与数字对象标识符(DOI)基础设施的集成,促进“数据即产品”、“模型即产品”和“服务即产品”的概念。DeepForge将使科学家能够将DOI分配给他们的共享资产,提供数据出处,通过使用链接的数据工件执行引用的ANN工作流,从而引用和公开复制研究结果。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Machine Learning Gateway for Scientific Workflow Design
- DOI:10.1155/2020/8867380
- 发表时间:2020-09
- 期刊:
- 影响因子:0
- 作者:B. Broll;U. Timalsina;P. Völgyesi;T. Budavári;Á. Lédeczi;M. A. Sanchez
- 通讯作者:B. Broll;U. Timalsina;P. Völgyesi;T. Budavári;Á. Lédeczi;M. A. Sanchez
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Akos Ledeczi其他文献
Akos Ledeczi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Akos Ledeczi', 18)}}的其他基金
Collaborative Research: CPS: Medium: A3EM: Animal-borne Adaptive Acoustic Environmental Monitoring
合作研究:CPS:媒介:A3EM:动物源性自适应声环境监测
- 批准号:
2312391 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Beyond CS Principles: Engaging Female High School Students in New Frontiers of Computing
合作研究:超越计算机科学原理:让女高中生参与计算新领域
- 批准号:
1949472 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CSforAll: EAGER: NetsBlox: Visual Programming Environment for Teaching Distributed Computing Concepts
CSforAll:EAGER:NetsBlox:用于教授分布式计算概念的可视化编程环境
- 批准号:
1644848 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
PFI:AIR - TT: High-precision, low-cost GPS cloud service
PFI:AIR - TT:高精度、低成本的GPS云服务
- 批准号:
1543098 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
I-Corps: A Community-Driven Precision GPS Service
I-Corps:社区驱动的精确 GPS 服务
- 批准号:
1449767 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
NETS: Small: Relative Localization with GPS
NETS:小型:使用 GPS 进行相对定位
- 批准号:
1218710 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CPS: Synergy: Integrated Modeling, Analysis and Synthesis of Miniature Medical Devices
CPS:Synergy:微型医疗器械的集成建模、分析和综合
- 批准号:
1239355 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Radio Interferometric Tracking of Wireless Nodes Indoors
室内无线节点的无线电干涉跟踪
- 批准号:
0721604 - 财政年份:2007
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似国自然基金
化脓性链球菌分泌性酯酶Sse抑制LC3相关吞噬促其侵袭的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
太阳能电池Cu2ZnSn(SSe)4/CdS界面过渡层结构模拟及缺陷态消除研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
掺杂实现Cu2ZnSn(SSe)4吸收层表层稳定弱n型特性的第一性原理研究
- 批准号:12004100
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于SSE的航空信息系统信息安全保障评价指标体系的研究
- 批准号:60776808
- 批准年份:2007
- 资助金额:19.0 万元
- 项目类别:联合基金项目
相似海外基金
異常検知手法と大気ノイズ補正を併用したInSAR時系列による未知のSSE検出手法の確立
利用异常检测方法和大气噪声校正建立利用InSAR时间序列的未知SSE检测方法
- 批准号:
24K07168 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on vibration theory for defect detection by acoustic excitation using SSE analysis
基于SSE分析的声激励缺陷检测振动理论研究
- 批准号:
23K03995 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on defect detection by spatial spectral entropy (SSE) and healthy part evaluation for noncontact acoustic inspection
非接触声学检测中空间谱熵(SSE)缺陷检测和健康部位评估研究
- 批准号:
19K04414 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Numerical simulations of earthquake and SSE triggering by dynamic stress changes
动态应力变化引发地震和SSE的数值模拟
- 批准号:
18K03775 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NSCI: SI2-SSE: An Extensible Model to Support Scalable Checkpoint-Restart for DMTCP Across Multiple Disciplines
NSCI:SI2-SSE:支持跨多个学科的 DMTCP 可扩展检查点重启的可扩展模型
- 批准号:
1740218 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SI2-SSE: GenApp - A Transformative Generalized Application Cyberinfrastructure
SI2-SSE:GenApp - 变革性通用应用程序网络基础设施
- 批准号:
1912444 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SI2-SSE: A parallel computing framework for large-scale real-space and real-time TDDFT excited-states calculations
SI2-SSE:大规模实空间和实时 TDDFT 激发态计算的并行计算框架
- 批准号:
1739423 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSE: WRENCH: A Simulation Workbench for Scientific Worflow Users, Developers, and Researchers
协作研究:SI2-SSE:WRENCH:面向科学 Worflow 用户、开发人员和研究人员的模拟工作台
- 批准号:
1642369 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SI2-SSE: Entangled Quantum Dynamics in Closed and Open Systems, an Open Source Software Package for Quantum Simulator Development and Exploration of Synthetic Quantum Matter
SI2-SSE:封闭和开放系统中的纠缠量子动力学,用于量子模拟器开发和合成量子物质探索的开源软件包
- 批准号:
1740130 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SI2-SSE: Highly Efficient and Scalable Software for Coarse-Grained Molecular Dynamics
SI2-SSE:高效且可扩展的粗粒度分子动力学软件
- 批准号:
1740211 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant