SI2-SSE: Collaborative Research: A Sustainable Future for the Glue Multi-Dimensional Linked Data Visualization Package
SI2-SSE:协作研究:Glue 多维关联数据可视化包的可持续未来
基本信息
- 批准号:1740229
- 负责人:
- 金额:$ 16.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Glue is a free and open-source application that allows scientists and data scientists to explore relationships within and across related datasets. Glue makes it easy create a wide variety of visualizations (such as scatter plots, bar charts, images) of data, including three dimensional views. What makes Glue unique is its ability to connect datasets together, without merging them into one. Thus, for example, two Earth-based mapping data sets may be connected and jointly visualized by using the coordinates (e.g. latitude and longitude) to glue the maps together, so that when a user selects (e.g. with a lasso tool) regions in one data set, the corresponding selected subset of data will highlight in all related visualizations simultaneously. These ?linked views" are especially powerful across wide varieties of plot types. For example, if a user interested in air traffic control glues a data set with information about the 3D locations of all airplanes to a second data set giving weather information, that user could make a combination of selections that would highlight (on maps, in 3D views, or any other display) planes at particular altitudes where thunderstorms might be likely to occur within a specific period of time. In particular, Glue makes it easy for users to create their own kinds of visualizations, which is important because different disciplines often need very specialized ways of looking at data. The software is already being used widely across several disciplines, in particular, astronomy and medicine, for which has been specially optimized. This project will add new features to make Glue more useful in more fields of science (e.g. bioinformatics, epidemiology) where there is demand for linked-view visualization, as well as making it more accessible as an educational tool. In addition, this project will train new users and developers, who will expand Glue into a much more sustainable community effort. Glue is an open-source package that allows scientists to explore relationships within and across related datasets, by making it easy for them to make multi-dimensional linked visualizations of datasets, select subsets of data interactively or programmatically in 1, 2, or 3 dimensions, and see those selections propagate live across all open visualizations of the data (e.g. graphs, maps, diagnostics charts). A unique feature of glue is that datasets from different sources can be linked to each other, using user-defined mathematical relationships between sets of data components, which makes it possible to carry out selections across datasets. Glue, written in Python, is designed from the ground-up for multidisciplinary work, and it is currently helping researchers make discoveries in geoscience, genomics, astronomy, and medicine. It is also giving insights into data from outside academia, including open data provided by governments and cities. To become sustainable in the long term, glue development needs to become a community-driven effort. Through tutorial and developer workshops, coding sprints, and strategic collaborations with researchers in several disciplines and experienced open source developers, the glue team will help user communities extend glue by developing new functionality useful within particular fields of research. The team will help users contribute the most widely-needed functionality back to glue, and will recruit active contributors to participate in core glue development. As the community grows, glue development will be guided to focus on several major features useful to the broad research community, including: support for very large datasets, support for running glue fully in the browser (inside Jupyter notebooks and Jupyter Lab), and improved interoperability with third-party tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria
Glue是一个免费的开源应用程序,允许科学家和数据科学家探索相关数据集内部和之间的关系。Glue可以轻松创建各种数据的可视化(如散点图,条形图,图像),包括三维视图。Glue的独特之处在于它能够将数据集连接在一起,而无需将它们合并为一个。因此,例如,两个基于地球的测绘数据集可以通过使用坐标(例如,纬度和经度)将地图粘合在一起来连接和联合可视化,使得当用户选择(例如,利用套索工具)一个数据集中的区域时,对应的所选数据子集将同时在所有相关可视化中突出显示。这些吗“链接视图”在各种各样的情节类型中特别强大。例如,如果对空中交通管制感兴趣的用户将具有关于所有飞机的3D位置的信息的数据集粘合到给出天气信息的第二数据集,则该用户可以进行选择的组合,该选择的组合将突出显示(在地图上、在3D视图中或任何其他显示器中)在特定高度处的飞机,其中在特定时间段内可能发生雷暴。特别是,Glue可以让用户轻松创建自己的可视化,这一点很重要,因为不同的学科通常需要非常专业的方法来查看数据。该软件已经在多个学科中广泛使用,特别是天文学和医学,并为此进行了专门优化。该项目将增加新功能,使Glue在更多需要链接视图可视化的科学领域(例如生物信息学,流行病学)中更有用,并使其更容易作为教育工具。此外,该项目还将培训新用户和开发人员,他们将把Glue扩展为一个更具可持续性的社区。Glue是一个开源软件包,允许科学家探索相关数据集内部和之间的关系,使他们能够轻松地对数据集进行多维链接可视化,以交互方式或编程方式在1,2或3维中选择数据子集,并查看这些选择在所有开放的数据可视化(例如图形,地图,诊断图表)中实时传播。胶水的一个独特功能是来自不同来源的数据集可以相互链接,使用用户定义的数据组件集之间的数学关系,这使得可以在数据集之间进行选择。Glue是用Python编写的,它是为多学科工作而设计的,目前正在帮助研究人员在地球科学、基因组学、天文学和医学方面做出发现。它还提供了来自学术界以外的数据的见解,包括政府和城市提供的开放数据。为了实现长期可持续发展,胶水开发需要成为一项社区驱动的努力。通过教程和开发人员研讨会,编码冲刺以及与多个学科的研究人员和经验丰富的开源开发人员的战略合作,Glue团队将通过开发在特定研究领域有用的新功能来帮助用户社区扩展Glue。该团队将帮助用户将最广泛需要的功能贡献回胶水,并将招募积极的贡献者参与核心胶水的开发。随着社区的发展,胶水开发将被引导关注对广泛研究社区有用的几个主要功能,包括:支持非常大的数据集,支持在浏览器中完全运行glue(在Xueyter笔记本和Xueyter实验室内),并改善与第三方的互操作性-该奖项反映了NSF的法定使命,并通过使用基金会的智力价值进行评估,被认为值得支持更广泛的影响审查标准
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michelle Borkin其他文献
Michelle Borkin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michelle Borkin', 18)}}的其他基金
Collaborative Research: Elements: Enriching Scholarly Communication with Augmented Reality
合作研究:要素:通过增强现实丰富学术交流
- 批准号:
2209624 - 财政年份:2022
- 资助金额:
$ 16.41万 - 项目类别:
Standard Grant
CRII: SCH: Multidimensional Tree Diagram Visualization for Linked Data Exploration
CRII:SCH:用于链接数据探索的多维树图可视化
- 批准号:
1657466 - 财政年份:2017
- 资助金额:
$ 16.41万 - 项目类别:
Standard Grant
相似国自然基金
化脓性链球菌分泌性酯酶Sse抑制LC3相关吞噬促其侵袭的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
太阳能电池Cu2ZnSn(SSe)4/CdS界面过渡层结构模拟及缺陷态消除研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
掺杂实现Cu2ZnSn(SSe)4吸收层表层稳定弱n型特性的第一性原理研究
- 批准号:12004100
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于SSE的航空信息系统信息安全保障评价指标体系的研究
- 批准号:60776808
- 批准年份:2007
- 资助金额:19.0 万元
- 项目类别:联合基金项目
相似海外基金
Collaborative Research: SI2-SSE: WRENCH: A Simulation Workbench for Scientific Worflow Users, Developers, and Researchers
协作研究:SI2-SSE:WRENCH:面向科学 Worflow 用户、开发人员和研究人员的模拟工作台
- 批准号:
1642369 - 财政年份:2017
- 资助金额:
$ 16.41万 - 项目类别:
Standard Grant
SI2-SSE: Collaborative Research: Integrated Tools for DNA Nanostructure Design and Simulation
SI2-SSE:合作研究:DNA 纳米结构设计和模拟的集成工具
- 批准号:
1740212 - 财政年份:2017
- 资助金额:
$ 16.41万 - 项目类别:
Standard Grant
Collaborative Research: NSCI: SI2-SSE: Time Stepping and Exchange-Correlation Modules for Massively Parallel Real-Time Time-Dependent DFT
合作研究:NSCI:SI2-SSE:大规模并行实时瞬态 DFT 的时间步进和交换相关模块
- 批准号:
1740219 - 财政年份:2017
- 资助金额:
$ 16.41万 - 项目类别:
Standard Grant
SI2-SSE: Collaborative Research: Integrated Tools for DNA Nanostructure Design and Simulation
SI2-SSE:合作研究:DNA 纳米结构设计和模拟的集成工具
- 批准号:
1740282 - 财政年份:2017
- 资助金额:
$ 16.41万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSE: An open source multi-physics platform to advance fundamental understanding of plasma physics and enable impactful application of plasma systems
合作研究:SI2-SSE:一个开源多物理平台,可促进对等离子体物理学的基本理解并实现等离子体系统的有效应用
- 批准号:
1740300 - 财政年份:2017
- 资助金额:
$ 16.41万 - 项目类别:
Standard Grant
SI2-SSE: Collaborative Research: Software Framework for Strongly Correlated Materials: from DFT to DMFT
SI2-SSE:协作研究:强相关材料的软件框架:从 DFT 到 DMFT
- 批准号:
1740112 - 财政年份:2017
- 资助金额:
$ 16.41万 - 项目类别:
Standard Grant
SI2-SSE: Collaborative Research: Software Framework for Strongly Correlated Materials: from DFT to DMFT
SI2-SSE:协作研究:强相关材料的软件框架:从 DFT 到 DMFT
- 批准号:
1740111 - 财政年份:2017
- 资助金额:
$ 16.41万 - 项目类别:
Standard Grant
Collaborative Proposal: SI2-SSE: An open source multi-physics platform to advance fundamental understanding of plasma physics and enable impactful application of plasma systems
合作提案:SI2-SSE:一个开源多物理平台,可促进对等离子体物理学的基本理解并实现等离子体系统的有效应用
- 批准号:
1740310 - 财政年份:2017
- 资助金额:
$ 16.41万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSE: WRENCH: A Simulation Workbench for Scientific Workflow Users, Developers, and Researchers
协作研究:SI2-SSE:WRENCH:面向科学工作流程用户、开发人员和研究人员的模拟工作台
- 批准号:
1642335 - 财政年份:2017
- 资助金额:
$ 16.41万 - 项目类别:
Standard Grant
Collaborative Research: SI2:SSE: Extending the Physics Reach of LHCb in Run 3 Using Machine Learning in the Real-Time Data Ingestion and Reduction System
合作研究:SI2:SSE:在运行 3 中使用实时数据摄取和还原系统中的机器学习扩展 LHCb 的物理范围
- 批准号:
1740102 - 财政年份:2017
- 资助金额:
$ 16.41万 - 项目类别:
Standard Grant