TRIPODS: Algorithms for Data Science: Complexity, Scalability, and Robustness.

TRIPODS:数据科学算法:复杂性、可扩展性和稳健性。

基本信息

  • 批准号:
    1740551
  • 负责人:
  • 金额:
    $ 150万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Award: CCF 1740551, Principal Investigator: Sham KakadeAlgorithmic tools underpin the ways in which modern data science methods glean insights from data, manipulate their environments, and estimate underlying statistical properties in the world. With increasing computational resources and an unprecedented growth of large datasets, there is an increased need for scalable and robust algorithmic tools which can provide insights into data in an automated manner, and thus, help to accelerate the pace of science and engineering. The modern challenges that a range of fields now face are no longer easily handled by ideas from a single discipline. A central goal of this project is to provide a common language and unifying methods for addressing contemporary data science challenges. At their core, each of the three disciplines of computer science, mathematics, and statistics has rich theories of complexity and robustness. These theories have influenced the design of the available tools that are used to address real world computational problems. Going forward, this project seeks new algorithms and design principles that unify ideas and provide a common language for addressing contemporary data science challenges. The PIs will draw from their expertise in computer science, mathematics, and statistics to aid in providing these unifying approaches. In parallel, aiming for a strong educational impact of the work, the aim is to train students an postdoctoral scholars to be well-versed in different areas underpinning data science and will incorporate appropriate theoretical ideas into a data science curriculum. The PIs will also organize events that help train students (including a hackathon and a bootcamp) and a research workshop that bring together researchers from the three disciplines for discussion and collaboration.In particular, the research objectives of this project are in unifying basic abstractions and techniques in order to yield not only further breakthroughs in all three fields, but also to impact societal and technological growth. The complexity and algorithmic questions this work seeks to address include: (i) how to unify various notions of complexity (which range from information theoretic to computational to black box oracle models), (ii) how to unify notions of robustness and adaptivity (e.g., how solutions and methods change as oracle models are corrupted by random or adversarial noise), (iii) how to address optimization challenges due to nonconvexity, and (iv) how to use these unified approaches to design more effective scalable tools, in theory and practice. These foundations will directly draw from the PIs close collaborations with various technological and scientific practitioners. Funds for the project come from CISE Computing and Communications Foundations, CISE Information Technology Research, MPS Division of Mathematical Sciences, and MPS Office of Multidisciplinary Activities.
奖项:CCF 1740551,首席研究员:Sham Kakade 算法工具支撑着现代数据科学方法从数据中收集见解、操纵环境以及估计世界潜在统计特性的方式。随着计算资源的增加和大型数据集的空前增长,对可扩展且强大的算法工具的需求不断增加,这些工具可以以自动化的方式提供对数据的洞察,从而有助于加快科学和工程的步伐。一系列领域现在面临的现代挑战不再能够通过单一学科的思想轻松应对。该项目的中心目标是提供通用语言和统一方法来应对当代数据科学挑战。计算机科学、数学和统计学这三个学科的核心都拥有丰富的复杂性和鲁棒性理论。 这些理论影响了用于解决现实世界计算问题的可用工具的设计。展望未来,该项目寻求新的算法和设计原则,以统一思想并为应对当代数据科学挑战提供通用语言。 PI 将利用他们在计算机科学、数学和统计学方面的专业知识来帮助提供这些统一的方法。与此同时,为了使这项工作产生强大的教育影响,目的是培养学生和博士后学者,使其精通支持数据科学的不同领域,并将适当的理论思想纳入数据科学课程。 PI 还将组织帮助培训学生的活动(包括黑客马拉松和训练营)和研究研讨会,将三个学科的研究人员聚集在一起进行讨论和合作。特别是,该项目的研究目标是统一基本抽象和技术,以便不仅在所有三个领域取得进一步突破,而且影响社会和技术发展。这项工作寻求解决的复杂性和算法问题包括:(i)如何统一各种复杂性概念(从信息论到计算再到黑盒预言机模型),(ii)如何统一鲁棒性和适应性的概念(例如,随着预言机模型被随机或对抗性噪声破坏,解决方案和方法如何变化),(iii)如何解决由于非凸性而导致的优化挑战,以及 (iv) 如何在理论和实践中使用这些统一的方法来设计更有效的可扩展工具。这些基金会将直接借鉴 PI 与各种技术和科学从业者的密切合作。该项目的资金来自 CISE 计算和通信基金会、CISE 信息技术研究中心、MPS 数学科学部和 MPS 多学科活动办公室。

项目成果

期刊论文数量(41)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Proximal Methods Avoid Active Strict Saddles of Weakly Convex Functions
近端方法避免弱凸函数的主动严格鞍点
Competitive online algorithms for resource allocation over the positive semidefinite cone
正半定锥上资源分配的竞争性在线算法
  • DOI:
    10.1007/s10107-018-1305-1
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Eghbali, Reza;Saunderson, James;Fazel, Maryam
  • 通讯作者:
    Fazel, Maryam
STOCHASTIC MODEL-BASED MINIMIZATION OF WEAKLY CONVEX FUNCTIONS
  • DOI:
    10.1137/18m1178244
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Davis, Damek;Drusvyatskiy, Dmitriy
  • 通讯作者:
    Drusvyatskiy, Dmitriy
Stochastic optimization under time drift: iterate averaging, step-decay schedules, and high probability guarantees
时间漂移下的随机优化:迭代平均、步进衰减计划和高概率保证
What are the Statistical Limits of Offline RL with Linear Function Approximation?
  • DOI:
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ruosong Wang;Dean Phillips Foster;S. Kakade
  • 通讯作者:
    Ruosong Wang;Dean Phillips Foster;S. Kakade
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sham Kakade其他文献

Learning and selective attention
学习与选择性注意
  • DOI:
    10.1038/81504
  • 发表时间:
    2000-11-01
  • 期刊:
  • 影响因子:
    20.000
  • 作者:
    Peter Dayan;Sham Kakade;P. Read Montague
  • 通讯作者:
    P. Read Montague
Guest editorial: special issue on learning theory
  • DOI:
    10.1007/s10994-010-5181-z
  • 发表时间:
    2010-04-24
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Sham Kakade;Ping Li
  • 通讯作者:
    Ping Li

Sham Kakade的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sham Kakade', 18)}}的其他基金

AF: Medium: Collaborative Research: Estimation, Learning, and Memory: The Quest for Statistically Optimal Algorithms
AF:媒介:协作研究:估计、学习和记忆:追求统计最优算法
  • 批准号:
    2212841
  • 财政年份:
    2021
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
AF: Medium: Collaborative Research: Estimation, Learning, and Memory: The Quest for Statistically Optimal Algorithms
AF:媒介:协作研究:估计、学习和记忆:追求统计最优算法
  • 批准号:
    1703574
  • 财政年份:
    2017
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
AitF: Spectral Methods in the Field: New Tools for Discovering Latent Structure in Societal-Scale Data
AitF:现场谱方法:发现社会规模数据中潜在结构的新工具
  • 批准号:
    1637360
  • 财政年份:
    2016
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
Graduate Research Fellowship Program
研究生研究奖学金计划
  • 批准号:
    9818613
  • 财政年份:
    1998
  • 资助金额:
    $ 150万
  • 项目类别:
    Fellowship Award

相似海外基金

EAGER: Algorithms for Analyzing Faulty Data Using Domain Information
EAGER:使用域信息分析错误数据的算法
  • 批准号:
    2414736
  • 财政年份:
    2024
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
XTRIPODS: Algorithms and Machine Learning in Data Intensive Models
XTRIPODS:数据密集型模型中的算法和机器学习
  • 批准号:
    2342527
  • 财政年份:
    2024
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
CAREER: Data Structures and Streaming Algorithms
职业:数据结构和流算法
  • 批准号:
    2339942
  • 财政年份:
    2024
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
Data-Driven Algorithms for Data Acquisition
用于数据采集的数据驱动算法
  • 批准号:
    EP/Y037200/1
  • 财政年份:
    2024
  • 资助金额:
    $ 150万
  • 项目类别:
    Research Grant
RII Track-4: NSF: Extracting Pan Genomic Information from Metagenomic Data: Distributed Algorithms and Scalable Software
RII Track-4:NSF:从宏基因组数据中提取泛基因组信息:分布式算法和可扩展软件
  • 批准号:
    2327456
  • 财政年份:
    2024
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
  • 批准号:
    2312872
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2415562
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
  • 批准号:
    2400511
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
ATD: Efficient and Effective Algorithms for Detection of Anomalies in High-dimensional Spatiotemporal Data with Large Amounts of Missing Data
ATD:高效且有效的高维时空数据异常检测算法
  • 批准号:
    2318925
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
  • 批准号:
    2247795
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了