BIGDATA: F: Statistical Foundation of Predictivity: A Novel Architecture for Big Data Learning
BIGDATA:F:预测性的统计基础:大数据学习的新颖架构
基本信息
- 批准号:1741191
- 负责人:
- 金额:$ 90万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-01-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Identifying variables that are good for prediction, especially in the context of BIG DATA, is an important challenge. The scientific literature currently lacks research that directly considers a variable set's potential ability to predict, referred to as "predictivity", as a parameter to be estimated. This project sets out to lay down statistical foundations for measures of predictivity, and proposes a novel framework for maximizing predictivity in big data learning. The research includes an application to big data in urban planning, addressing prediction problems in New York City's Vision Zero project. In collaboration with the NYC Department of Transportation, the PI and his team will identify risk factors and their combinations that are associated with traffic accidents and their outcomes, and improve accident prevention and victim outcome prediction. A novel sample-based measure of predictivity, the I-score, that is effective in differentiating between noisy and predictive variables in big data is proposed. This measure can be related to a lower bound for the correct prediction rate. Guided by this I-score, variable sets of high potential predictivity can be identified. This high predictivity often resides within complex interactions among the variables. To fully leverage the predictivity in an identified variable set, powerful classifiers based on deep architectures will be constructed. Novel strategies are proposed for scalable computational implementation of the proposed framework. Systematic evaluation of the proposed methods, comparing with current strategies, will be carried out using simulations and benchmark real data sets.
识别有利于预测的变量,特别是在大数据的背景下,是一个重要的挑战。目前,科学文献缺乏直接将变量集的潜在预测能力视为待估计参数的研究,称为“预测性”。该项目旨在为衡量预测性奠定统计基础,并提出在大数据学习中最大化预测性的新框架。这项研究包括在城市规划中应用大数据,解决纽约市Vision Zero项目中的预测问题。PI和他的团队将与纽约市交通部合作,确定与交通事故及其结果相关的风险因素及其组合,并改进事故预防和受害者结果预测。提出了一种新的基于样本的预测性度量I-SCORE,它能有效地区分大数据中的噪声变量和预测变量。这一衡量标准可以与正确预测率的下限有关。在这个I-SCORE的指导下,可以识别高潜在预测性的可变集合。这种高预测性往往存在于变量之间复杂的相互作用中。为了充分利用已识别变量集中的可预测性,将构建基于深层体系结构的强大分类器。提出了框架可扩展计算实现的新策略。将使用模拟和基准真实数据集对建议的方法进行系统评估,并与当前的策略进行比较。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shaw-Hwa Lo其他文献
On some representations of the Bootstrap
- DOI:
10.1007/bf00339995 - 发表时间:
1989-08-01 - 期刊:
- 影响因子:1.600
- 作者:
Shaw-Hwa Lo - 通讯作者:
Shaw-Hwa Lo
On a mapping approach to investigating the bootstrap accuracy
- DOI:
10.1007/s004400050083 - 发表时间:
1997-02-01 - 期刊:
- 影响因子:1.600
- 作者:
Kani Chen;Shaw-Hwa Lo - 通讯作者:
Shaw-Hwa Lo
Shaw-Hwa Lo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shaw-Hwa Lo', 18)}}的其他基金
A Novel Statistical Framework for Big Data Prediction
用于大数据预测的新型统计框架
- 批准号:
1513408 - 财政年份:2015
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: A General Framework for High Throughput Biological Learning: Theory Development and Applications
协作研究:高通量生物学习的通用框架:理论发展和应用
- 批准号:
0714669 - 财政年份:2007
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Statistical Analysis of Linkage/Association on Family-Based Studies in Human Genetics
人类遗传学中基于家族的研究的连锁/关联统计分析
- 批准号:
0071930 - 财政年份:2000
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
相似海外基金
SCH: Statistical Foundation and Predictive Modeling for Personalized Diabetes Management: Continuous Glucose Monitoring (CGM), Electronic Health Records (EHR), and Biobanks
SCH:个性化糖尿病管理的统计基础和预测模型:连续血糖监测 (CGM)、电子健康记录 (EHR) 和生物样本库
- 批准号:
2205441 - 财政年份:2022
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Statistical Network Models: Building the Foundation
统计网络模型:构建基础
- 批准号:
EP/X009505/1 - 财政年份:2022
- 资助金额:
$ 90万 - 项目类别:
Research Grant
A New Foundation for Statistical Shape Analysis
统计形状分析的新基础
- 批准号:
EP/V048104/1 - 财政年份:2021
- 资助金额:
$ 90万 - 项目类别:
Research Grant
An exploratory study toward a foundation of nonequilibrium statistical mechanics based on the fluctuation theorem
基于涨落定理的非平衡统计力学基础的探索性研究
- 批准号:
17K18737 - 财政年份:2017
- 资助金额:
$ 90万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Theoretical foundation of large-scale structure formation for numerical statistical cosmology
数值统计宇宙学大尺度结构形成的理论基础
- 批准号:
17K14273 - 财政年份:2017
- 资助金额:
$ 90万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Foundation of control theory based on statistical data analysis
基于统计数据分析的控制理论基础
- 批准号:
25420437 - 财政年份:2013
- 资助金额:
$ 90万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CORDEX Empirical/Statistical Downscaling Workshops: Establishing a Foundation for Climate-Stakeholder Interaction in Africa
CORDEX 经验/统计降尺度研讨会:为非洲气候利益相关者互动建立基础
- 批准号:
1311206 - 财政年份:2013
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Mathematical foundation of efficient algorithms for statistical inference
统计推断高效算法的数学基础
- 批准号:
22300098 - 财政年份:2010
- 资助金额:
$ 90万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Statistical prediction, causation, incomplete data analysis and foundation of sciencee
统计预测、因果关系、不完整数据分析和科学基础
- 批准号:
22300096 - 财政年份:2010
- 资助金额:
$ 90万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Statistical Learning as a Foundation for Lexical Development
职业:统计学习作为词汇发展的基础
- 批准号:
0847379 - 财政年份:2009
- 资助金额:
$ 90万 - 项目类别:
Standard Grant