CAREER: Statistical Learning as a Foundation for Lexical Development
职业:统计学习作为词汇发展的基础
基本信息
- 批准号:0847379
- 负责人:
- 金额:$ 68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2015-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).During the first years of life, infants learn a remarkable amount about the structure of their native language. The precocious nature of early language acquisition has motivated the exploration of the forces driving these amazing feats of learning. One promising mechanism is statistical learning, the process of detecting structure in the environment by tracking patterns present in the input. Recent investigations have revealed that infants possess powerful statistical learning capabilities that allow them to track patterns in the sounds and words of linguistic input. However, the manner in which infants use statistical learning to solve real challenges in language acquisition is not yet clear. This project investigates how infants use statistical learning to perform two fundamental tasks in early language development: detecting words in fluent speech and linking the sounds of words with meanings. The experiments incorporate several infant testing methodologies, including measures of word segmentation, object label learning tasks, and online measures of word learning and recognition. The experiments also integrate the use of carefully controlled artificial languages and natural native language statistical regularities to probe the robustness of statistical learning to inconsistency and acoustic variation, two hallmarks of natural speech that present significant challenges to the detection of statistical regularities. The findings from this project will shed light on how infants track the statistical regularities of their native language and how those regularities shape early language development. More broadly, this investigation will contribute to the understanding of the bases of language acquisition. Furthermore, revealing the nature of fundamental language acquisition mechanisms has significant implications for understanding the developmental course of language impairments. Characterizing the processes that drive early language acquisition in typically developing infants will inform the search for the bases of language deficits. In addition, this project integrates educational opportunities for students with the research program, specifically focusing on the recruitment of research assistants from promising high school students and undergraduates who belong to groups underrepresented in higher education and in research. Students will participate throughout the research process, from recruiting and testing participants to disseminating the results to the public and scientific communities. Involvement in a research group provides students with unique opportunities to develop strong academic ties and academic skills, to participate in mentoring relationships, and to develop new ways of thinking.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。在生命的最初几年,婴儿学习了大量关于母语结构的知识。早期语言习得的早熟性激发了人们对推动这些惊人学习成就的力量的探索。一种有前途的机制是统计学习,即通过跟踪输入中存在的模式来检测环境中的结构的过程。最近的研究表明,婴儿拥有强大的统计学习能力,使他们能够跟踪语言输入的声音和单词的模式。然而,婴儿使用统计学习来解决语言习得中真实的挑战的方式尚不清楚。该项目研究婴儿如何使用统计学习来执行早期语言发展中的两项基本任务:检测流利语音中的单词以及将单词的声音与含义联系起来。实验纳入了几个婴儿的测试方法,包括分词措施,对象标签学习任务,和在线措施的单词学习和识别。实验还集成了使用精心控制的人工语言和自然母语的统计学习,以探索统计学习的鲁棒性不一致性和声学变化,自然语音的两个标志,提出了显着的挑战,以检测统计学习。该项目的发现将揭示婴儿如何跟踪其母语的统计数据,以及这些数据如何影响早期语言发展。更广泛地说,这项研究将有助于理解语言习得的基础。此外,揭示语言习得的基本机制对于理解语言障碍的发展过程具有重要意义。描述典型发育中的婴儿早期语言习得的过程将为寻找语言缺陷的基础提供信息。此外,该项目将学生的教育机会与研究方案相结合,特别侧重于从有前途的高中生和本科生中招聘研究助理,这些学生属于高等教育和研究中代表性不足的群体。学生将参与整个研究过程,从招募和测试参与者到向公众和科学界传播结果。参与研究小组为学生提供了独特的机会,以发展强大的学术联系和学术技能,参与指导关系,并发展新的思维方式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katharine Graf Estes其他文献
Infants Generalize Representations of Statistically Segmented Words
婴儿概括统计分段单词的表示
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Katharine Graf Estes - 通讯作者:
Katharine Graf Estes
From Tracking Statistics to Learning words: Statistical Learning and Lexical Acquisition
从跟踪统计到学习单词:统计学习和词汇习得
- DOI:
10.1111/j.1749-818x.2009.00164.x - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Katharine Graf Estes - 通讯作者:
Katharine Graf Estes
Flexibility in Statistical Word Segmentation: Finding Words in Foreign Speech
统计分词的灵活性:在外语语音中查找单词
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Katharine Graf Estes;S. Gluck;C. Bastos - 通讯作者:
C. Bastos
Katharine Graf Estes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katharine Graf Estes', 18)}}的其他基金
The Dynamics of Early Bilingual Experience
早期双语经历的动态
- 批准号:
2235328 - 财政年份:2023
- 资助金额:
$ 68万 - 项目类别:
Standard Grant
相似海外基金
CAREER: New Frameworks for Ethical Statistical Learning: Algorithmic Fairness and Privacy
职业:道德统计学习的新框架:算法公平性和隐私
- 批准号:
2340241 - 财政年份:2024
- 资助金额:
$ 68万 - 项目类别:
Continuing Grant
CAREER: Statistical Learning with Recursive Partitioning: Algorithms, Accuracy, and Applications
职业:递归分区的统计学习:算法、准确性和应用
- 批准号:
2239448 - 财政年份:2023
- 资助金额:
$ 68万 - 项目类别:
Continuing Grant
CAREER: Domain-aware Statistical Learning
职业:领域感知统计学习
- 批准号:
2143695 - 财政年份:2022
- 资助金额:
$ 68万 - 项目类别:
Standard Grant
CAREER: Statistical Learning from a Modern Perspective: Over-parameterization, Regularization, and Generalization
职业:现代视角下的统计学习:过度参数化、正则化和泛化
- 批准号:
2143215 - 财政年份:2022
- 资助金额:
$ 68万 - 项目类别:
Continuing Grant
CAREER: Understanding metal/support interactions in catalysis with statistical learning
职业:通过统计学习了解催化中金属/载体的相互作用
- 批准号:
2143941 - 财政年份:2022
- 资助金额:
$ 68万 - 项目类别:
Continuing Grant
CAREER: Federated Learning: Statistical Optimality and Provable Security
职业:联邦学习:统计最优性和可证明的安全性
- 批准号:
2144593 - 财政年份:2022
- 资助金额:
$ 68万 - 项目类别:
Continuing Grant
CAREER: Designing Meaningful Learning Experiences for Statistical Literacy in Secondary Mathematics
职业:为中学数学中的统计素养设计有意义的学习体验
- 批准号:
2143816 - 财政年份:2022
- 资助金额:
$ 68万 - 项目类别:
Continuing Grant
CAREER: Fast and Accurate Statistical Learning and Inference from Large-Scale Data: Theory, Methods, and Algorithms
职业:从大规模数据中快速准确地进行统计学习和推理:理论、方法和算法
- 批准号:
2046874 - 财政年份:2021
- 资助金额:
$ 68万 - 项目类别:
Continuing Grant
CAREER: New Statistical Paradigms Reconciling Empirical Surprises in Modern Machine Learning
职业:新的统计范式调和现代机器学习中的经验惊喜
- 批准号:
2042473 - 财政年份:2021
- 资助金额:
$ 68万 - 项目类别:
Continuing Grant
CAREER: Nonconvex Optimization for Statistical Estimation and Learning: Conditioning, Dynamics, and Nonsmoothness
职业:统计估计和学习的非凸优化:条件、动力学和非平滑性
- 批准号:
2047637 - 财政年份:2021
- 资助金额:
$ 68万 - 项目类别:
Continuing Grant














{{item.name}}会员




