BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management

大数据:F:协作研究:负责任的数据管理的基础

基本信息

  • 批准号:
    1741254
  • 负责人:
  • 金额:
    $ 36.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Big Data technology promises to improve people's lives, accelerate scientific discovery and innovation, and bring about positive societal change. Yet, if not used responsibly, this same technology can reinforce inequity, limit accountability and infringe on the privacy of individuals: irreproducible results can influence global economic policy; algorithmic changes in search engines can sway elections and incite violence; models based on biased data can legitimize and amplify discrimination in the criminal justice system; algorithmic hiring practices can silently reinforce diversity issues and potentially violate the law; privacy and security violations can erode the trust of users and expose companies to legal and financial consequences. The focus of this project is on using Big Data technology responsibly -- in accordance with ethical and moral norms, and legal and policy considerations. This project establishes a foundational new role for data management technology, in which managing the responsible use of data across the lifecycle becomes a core system requirement. The broader goal of this project is to help usher in a new phase of data science, in which the technology considers not only the accuracy of the model but also ensures that the data on which it depends respect the relevant laws, societal norms, and impacts on humans. This project defines properties of responsible data management, which include fairness (and the related concepts of representativeness and diversity), transparency (and accountability), and data protection. It complements what is done in the data mining and machine learning communities, where the focus is on analyzing fairness, accountability and transparency of the final step in the data analysis lifecycle, and considers the problems that can be introduced upstream from data analysis: during dataset selection, cleaning, pre-processing, integration, and sharing. This project develops conceptual frameworks and algorithmic techniques that support fairness, transparency and data protection properties through all stages of the data usage lifecycle: beginning with data discovery and acquisition, through cleaning, integration, querying, and ultimately analysis. The contributions are structured along three aims. Aim 1 considers responsible dataset discovery, profiling, and integration. Aim 2 considers responsible query processing and develops a general framework for declarative specification, checking and enforcement of fairness, representativeness and diversity. Aim 3 incorporates data protection into the lifecycle, develops techniques to facilitate sharing of sensitive data, and considers the tradeoffs between privacy and transparency. This project is poised to establish a multidisciplinary research agenda around responsible data management as a critical factor in enabling fairness, accountability and transparency in decision-making and prediction systems. Additional information about the project is available at DataResponsibly.com.
大数据技术有望改善人们的生活,加速科学发现和创新,并带来积极的社会变革。然而,如果不负责任地使用,同样的技术可能会加剧不平等,限制问责制并侵犯个人隐私:不可复制的结果可能会影响全球经济政策;搜索引擎的算法变化可能会影响选举并煽动暴力;基于偏见数据的模型可能会使刑事司法系统中的歧视合法化并扩大歧视;算法招聘实践可能会默默地加剧多样性问题,并可能违反法律;侵犯隐私和安全可能会削弱用户的信任,并使公司面临法律的和财务后果。该项目的重点是负责任地使用大数据技术-符合伦理和道德规范以及法律的和政策考虑。该项目为数据管理技术建立了一个基础性的新角色,其中管理整个生命周期中数据的负责任使用成为核心系统需求。该项目更广泛的目标是帮助开创数据科学的新阶段,在这个阶段,该技术不仅考虑模型的准确性,而且还确保其所依赖的数据尊重相关法律,社会规范和对人类的影响。该项目定义了负责任的数据管理的属性,包括公平性(以及代表性和多样性的相关概念),透明度(和问责制)和数据保护。它补充了数据挖掘和机器学习社区所做的工作,重点是分析数据分析生命周期中最后一步的公平性,问责制和透明度,并考虑了数据分析上游可能引入的问题:在数据集选择,清理,预处理,集成和共享期间。该项目开发概念框架和算法技术,在数据使用生命周期的所有阶段支持公平性,透明度和数据保护属性:从数据发现和获取开始,通过清理,集成,查询和最终分析。这些贡献是按照沿着三个目标组织的。目标1考虑负责任的数据集发现、分析和集成。目标2考虑负责任的查询处理,并开发一个通用的框架,声明规范,检查和执行的公平性,代表性和多样性。目标3将数据保护纳入生命周期,开发促进敏感数据共享的技术,并考虑隐私和透明度之间的权衡。该项目准备围绕负责任的数据管理建立一个多学科的研究议程,作为实现决策和预测系统公平、问责和透明的关键因素。有关该项目的更多信息可在DataResponsibly.com上获得。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gerome Miklau其他文献

Auditing a database under retention policies
  • DOI:
    10.1007/s00778-012-0282-x
  • 发表时间:
    2012-07-06
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Wentian Lu;Gerome Miklau;Neil Immerman
  • 通讯作者:
    Neil Immerman

Gerome Miklau的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gerome Miklau', 18)}}的其他基金

SATC: CORE: Medium: Principles and Algorithms for Visual Data Exploration Under Differential Privacy
SATC:核心:媒介:差异隐私下可视化数据探索的原理和算法
  • 批准号:
    1954814
  • 财政年份:
    2020
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
TWC: Medium: Collaborative: Re[DP]: Realistic Data Mining Under Differential Privacy
TWC:媒介:协作:Re[DP]:差异隐私下的现实数据挖掘
  • 批准号:
    1409143
  • 财政年份:
    2014
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
NeTS: Small: Protecting Privacy While Providing Utility in Published Network Mobility Traces Using Differential Privacy
NeTS:小型:使用差异隐私保护隐私,同时在已发布的网络移动跟踪中提供实用性
  • 批准号:
    1421325
  • 财政年份:
    2014
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
TC:Large:Collaborative Research:Practical Privacy: Metrics and Methods for Protecting Record-level and Relational Data
TC:大型:协作研究:实用隐私:保护记录级和关系数据的指标和方法
  • 批准号:
    1012748
  • 财政年份:
    2010
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Continuing Grant
TC: Medium: Dissemination and Analysis of Private Network Data
TC:媒介:专网数据传播与分析
  • 批准号:
    0964094
  • 财政年份:
    2010
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
CAREER: Securing history: privacy and accountability in database systems
职业:保护历史:数据库系统中的隐私和责任
  • 批准号:
    0643681
  • 财政年份:
    2007
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Continuing Grant
CT-T: Collaborative Research: Preserving Utility while Ensuring Privacy for Linked Data
CT-T:协作研究:保留实用性,同时确保链接数据的隐私
  • 批准号:
    0627642
  • 财政年份:
    2006
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Continuing Grant

相似海外基金

BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    2308649
  • 财政年份:
    2022
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications
BIGDATA:协作研究:F:数据驱动应用程序的整体优化
  • 批准号:
    2027516
  • 财政年份:
    2020
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Practical Analysis of Large-Scale Data with Lyme Disease Case Study
BIGDATA:F:协作研究:莱姆病案例研究大规模数据的实际分析
  • 批准号:
    1934319
  • 财政年份:
    2019
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
  • 批准号:
    1838022
  • 财政年份:
    2019
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management
大数据:F:协作研究:负责任的数据管理的基础
  • 批准号:
    1926250
  • 财政年份:
    2019
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    1947584
  • 财政年份:
    2019
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    1837964
  • 财政年份:
    2019
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838222
  • 财政年份:
    2019
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838248
  • 财政年份:
    2019
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了