CAREER: Mining and Exploring Heterogeneous Information Networks with Social Factors
职业:挖掘和探索具有社会因素的异构信息网络
基本信息
- 批准号:1741634
- 负责人:
- 金额:$ 37.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Heterogeneous social information networks, such as online social networks, online forums, and digital government, are valuable sources for data analysis. However, most of the current information network studies ignore the social factors involved and treat people and their interactions simply as nodes and links in graphs. This project provides a systematic approach for analyzing such networks that addresses human factor-related questions, recognizing that different types of links have different relevance to a particular question. For example, a "mentor" link might be much more relevant to recommending someone to apply for a particular job rather than see a certain movie. This project identifies five fundamental research problems and provides solutions to these problems in heterogeneous social information networks: (1) predicting missing user and link characteristics, (2) identifying personality traits, (3) role detection, (4) prediction of social activities, and (5) recommender systems. Together these provide a way to include social understanding in analysis of networks.The basic approach is to provide probabilistic models that can (1) incorporate guidance in terms of either limited labels or heuristics from domain experts, and (2) automatically select the most critical information in complicated heterogeneous information networks for the target problem. For example, for the user profiling problem of age group prediction, a probabilistic model is designed via defining the probability of a possible label configuration given the network structure and strengths on different types of links. The derived learning algorithm will propagate the labels from only a few users via different types of links, and the strength of each link type will be learned according to the configuration probability of labels on that link type. The intuition is that if the "classmates" link type brings two users with similar age together, the algorithm needs to assign the same age group label to the two connected users that are classmates and assigns a higher strength weight to the "classmates" link type. The project will develop an integrated network mining system based on Spark and GraphX, to support the proposed algorithms on large-scale networks. This system will be used as a research vehicle for exploring efficient approximations with quality guarantees for the proposed algorithms.
异构的社会信息网络,如在线社交网络、在线论坛和数字政府,是数据分析的宝贵来源。 然而,目前的信息网络研究大多忽略了所涉及的社会因素,并把人们和他们的互动简单地作为节点和链接图。 该项目提供了一个系统的方法来分析这种网络,解决人为因素相关的问题,认识到不同类型的链接有不同的相关性,一个特定的问题。 例如,“导师”链接可能更适合推荐某人申请特定的工作,而不是看某部电影。 该项目确定了五个基本研究问题,并提供了解决这些问题的方法,在异构的社会信息网络:(1)预测缺失的用户和链接特征,(2)识别人格特质,(3)角色检测,(4)预测的社会活动,和(5)推荐系统。基本的方法是提供概率模型,这些模型可以(1)结合领域专家的有限标签或分类指导,(2)自动选择目标问题的复杂异构信息网络中最关键的信息。例如,对于年龄组预测的用户分析问题,通过定义给定网络结构和不同类型链路上的强度的可能标签配置的概率来设计概率模型。 推导出的学习算法将通过不同类型的链接传播来自少数用户的标签,并且根据标签在该链接类型上的配置概率来学习每个链接类型的强度。直觉是,如果“同学”链接类型将两个年龄相似的用户带到一起,则算法需要为作为同学的两个连接的用户分配相同的年龄组标签,并为“同学”链接类型分配更高的强度权重。该项目将开发一个基于Spark和GraphX的集成网络挖掘系统,以支持大规模网络上的算法。该系统将被用来作为一个研究工具,探索有效的近似与质量保证所提出的算法。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
TIMME: Twitter Ideology-detection via Multi-task Multi-relational Embedding
- DOI:10.1145/3394486.3403275
- 发表时间:2020-06
- 期刊:
- 影响因子:0
- 作者:Zhiping Xiao;Weiping Song;Haoyan Xu;Zhicheng Ren;Yizhou Sun
- 通讯作者:Zhiping Xiao;Weiping Song;Haoyan Xu;Zhicheng Ren;Yizhou Sun
RaRE: Social Rank Regulated Large-scale Network Embedding
- DOI:10.1145/3178876.3186102
- 发表时间:2018-04
- 期刊:
- 影响因子:0
- 作者:Yupeng Gu;Yizhou Sun;Yanen Li;Yang Yang-Yang
- 通讯作者:Yupeng Gu;Yizhou Sun;Yanen Li;Yang Yang-Yang
Learning Continuous System Dynamics from Irregularly-Sampled Partial Observations
- DOI:
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Zijie Huang;Yizhou Sun;Wei Wang-
- 通讯作者:Zijie Huang;Yizhou Sun;Wei Wang-
Fast Adaptation for Cold-start Collaborative Filtering with Meta-learning
- DOI:10.1109/icdm50108.2020.00075
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Tianxin Wei;Ziwei Wu;Ruirui Li;Ziniu Hu;Fuli Feng;Xiangnan He;Yizhou Sun;Wei Wang-
- 通讯作者:Tianxin Wei;Ziwei Wu;Ruirui Li;Ziniu Hu;Fuli Feng;Xiangnan He;Yizhou Sun;Wei Wang-
GHashing: Semantic Graph Hashing for Approximate Similarity Search in Graph Databases
- DOI:10.1145/3394486.3403257
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Zongyue Qin;Yunsheng Bai;Yizhou Sun
- 通讯作者:Zongyue Qin;Yunsheng Bai;Yizhou Sun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yizhou Sun其他文献
Unit Selection: Learning Benefit Function from Finite Population Data
单元选择:从有限人口数据中学习效益函数
- DOI:
10.48550/arxiv.2210.08203 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Ang Li;Song Jiang;Yizhou Sun;J. Pearl - 通讯作者:
J. Pearl
User Stance Prediction via Online Behavior Mining
- DOI:
10.1145/3041021.3051144 - 发表时间:
2017-04 - 期刊:
- 影响因子:0
- 作者:
Yizhou Sun - 通讯作者:
Yizhou Sun
Getting to Know Your Data
- DOI:
10.1017/9781108683791.007 - 发表时间:
2019-09 - 期刊:
- 影响因子:0
- 作者:
Yizhou Sun - 通讯作者:
Yizhou Sun
LCARS: A Spatial Item Recommender System
LCARS:空间项目推荐系统
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:5.6
- 作者:
Bin Cui;Yizhou Sun;Zhiting Hu;Ling Chen - 通讯作者:
Ling Chen
Yizhou Sun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yizhou Sun', 18)}}的其他基金
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312501 - 财政年份:2023
- 资助金额:
$ 37.65万 - 项目类别:
Standard Grant
Collaborative Research: NSF-CSIRO: RESILIENCE: Graph Representation Learning for Fair Teaming in Crisis Response
合作研究:NSF-CSIRO:RESILIENCE:危机应对中公平团队的图表示学习
- 批准号:
2303037 - 财政年份:2023
- 资助金额:
$ 37.65万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: StructNet: Constructing and Mining Structure-Rich Information Networks for Scientific Research
III:媒介:协作研究:StructNet:为科学研究构建和挖掘结构丰富的信息网络
- 批准号:
1705169 - 财政年份:2017
- 资助金额:
$ 37.65万 - 项目类别:
Continuing Grant
CAREER: Mining and Exploring Heterogeneous Information Networks with Social Factors
职业:挖掘和探索具有社会因素的异构信息网络
- 批准号:
1453800 - 财政年份:2015
- 资助金额:
$ 37.65万 - 项目类别:
Continuing Grant
相似国自然基金
基于Genome mining技术研究抑制表皮葡萄球菌生物膜形成的次级代谢产物
- 批准号:21242003
- 批准年份:2012
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
Exploring the growth of deep-sea bivalves in areas of potential sea-floor mining
探索潜在海底采矿区域的深海双壳类动物的生长
- 批准号:
2889460 - 财政年份:2023
- 资助金额:
$ 37.65万 - 项目类别:
Studentship
Exploring the role of native tundra legumes in restoring soil health and ecosystem functioning at degraded mining sites in Northern Canada
探索本土苔原豆类在恢复加拿大北部退化矿区土壤健康和生态系统功能方面的作用
- 批准号:
557605-2021 - 财政年份:2022
- 资助金额:
$ 37.65万 - 项目类别:
Postdoctoral Fellowships
Mining Web-Service Logs to Recover REST API Calls: Exploring Real World Applicability and Chunk Size
挖掘 Web 服务日志以恢复 REST API 调用:探索现实世界的适用性和块大小
- 批准号:
574410-2022 - 财政年份:2022
- 资助金额:
$ 37.65万 - 项目类别:
University Undergraduate Student Research Awards
Exploring the role of native tundra legumes in restoring soil health and ecosystem functioning at degraded mining sites in Northern Canada
探索本土苔原豆类在恢复加拿大北部退化矿区土壤健康和生态系统功能方面的作用
- 批准号:
557605-2021 - 财政年份:2021
- 资助金额:
$ 37.65万 - 项目类别:
Postdoctoral Fellowships
Exploring applicability of millimeter-wave RADAR imaging solutions in mining technology
探索毫米波雷达成像解决方案在采矿技术中的适用性
- 批准号:
532218-2018 - 财政年份:2018
- 资助金额:
$ 37.65万 - 项目类别:
Engage Grants Program
Exploring northern transportation infastructure research opportunities with northern mining and transportation operators
与北方采矿和运输运营商一起探索北方交通基础设施研究机会
- 批准号:
517531-2017 - 财政年份:2017
- 资助金额:
$ 37.65万 - 项目类别:
Connect Grants Level 1
Exploring a collaboration with Manifold Data Mining
探索与 Manifold Data Mining 的合作
- 批准号:
493549-2016 - 财政年份:2016
- 资助金额:
$ 37.65万 - 项目类别:
Connect Grants Level 1
Exploring how Interactions and Responses within the Servicescape combine to form Customer Experience - A Text Mining Approach
探索 Servicescape 中的交互和响应如何结合起来形成客户体验 - 文本挖掘方法
- 批准号:
1943251 - 财政年份:2015
- 资助金额:
$ 37.65万 - 项目类别:
Studentship
CAREER: Mining and Exploring Heterogeneous Information Networks with Social Factors
职业:挖掘和探索具有社会因素的异构信息网络
- 批准号:
1453800 - 财政年份:2015
- 资助金额:
$ 37.65万 - 项目类别:
Continuing Grant
Spatial data mining exploring co-location of adverse birth outcomes and environmental variables
空间数据挖掘探索不良出生结果和环境变量的共存
- 批准号:
446385-2013 - 财政年份:2014
- 资助金额:
$ 37.65万 - 项目类别:
Collaborative Health Research Projects