Highly Ductile and Durable Double-network based Cementation - D3 Cement

高延展性和耐用性的双网络水泥 - D3 水泥

基本信息

  • 批准号:
    1742759
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

The goal of the project is to explore a non-conventional cementation technique using highly ductile and durable double-network materials, namely "D3 cement." This research mainly addresses two challenging issues - brittleness and non-durability - with current chemically or biologically cemented soil. Specifically, many mineral precipitation-treated soils can be stiff, but break easily at low strains. Hydrogel-treated bio-cemented soil has been found more ductile upon drying, but loses its strength when exposed to water, as the large volume expansion of the water-absorbing hydrophilic polymer network breaks the bonding between the soil particles. The D3 cement has broad potential applications in geotechnical, civil, environmental and petroleum fields, including dust control, infrastructure construction, and liquefaction mitigation, with potentially millions of dollars of cost savings. This research will also create a large data set rich in new knowledge on fundamental bio-inorganic-organic-soil interface interactions, and the relationship with their mechanical properties (strength, stiffness, ductility). Diverse education and outreach activities will promote K-12 and public education and Cross-disciplinary Graduate Workshop for the teams from the PI's Materials Lab and the collaborator's Biogeotech Lab.In this cross-disciplinary project, the objective is to overcome the limitations of fracture at low strains and non-durability by developing a novel cement that is 1) ductile and stiff and 2) less susceptible to water-induced soil strength loss, by uniquely extending concepts of material science to bio-cementation. The approach is to design and develop a hybrid cementing materials which can simultaneously form an organic-and-inorganic, interpenetrating double network in the soil and strongly bind the soil particles, possessing novel self-healing ability via organic-inorganic-soil reformable bonding. The performance of the new composite material will be examined with controls over the material composition, morphology, and hierarchical structures. This research, if successful, will yield a high-performance bio-based geological material. The work will be done in collaboration with researchers at the NSF-funded Center for Bio-mediated and Bio-inspired Geotechnics at Arizona State University.
该项目的目标是探索一种使用高韧性和耐用双网材料(即“D3水泥”)的非传统水泥技术。“这项研究主要解决了两个具有挑战性的问题-脆性和非耐久性-与目前的化学或生物胶结土壤。具体地说,许多矿物沉淀处理的土壤可能是坚硬的,但在低应变下容易破裂。水凝胶处理过的生物胶结土壤在干燥时更具延展性,但当暴露于水时失去其强度,因为吸水亲水聚合物网络的大体积膨胀破坏了土壤颗粒之间的结合。D3水泥在岩土工程、土木、环境和石油领域具有广泛的潜在应用,包括粉尘控制、基础设施建设和液化缓解,可能节省数百万美元的成本。 这项研究还将创建一个大型数据集,其中包含有关基本生物-无机-有机-土壤界面相互作用的新知识,以及与其力学性能(强度,刚度,延展性)的关系。 多元化的教育和外展活动将促进K-12和公共教育,并为PI材料实验室和合作者生物地理技术实验室的团队举办跨学科研究生工作坊。在这个跨学科项目中,本发明的目的是通过开发一种新的水泥来克服在低应变下断裂和不耐久的局限性,所述水泥1)具有延展性和刚性,2)对水较不敏感,通过将材料科学的概念独特地扩展到生物胶结,引起土壤强度损失。 设计开发一种能在土壤中同时形成有机-无机互穿双网络并能强力粘结土壤颗粒的杂化胶凝材料,通过有机-无机-土壤的可改造性粘结,使其具有新型的自修复能力。 将通过控制材料成分、形态和分层结构来检查新复合材料的性能。 这项研究如果成功,将产生一种高性能的生物基地质材料。这项工作将与美国国家科学基金会资助的亚利桑那州立大学生物介导和生物启发岩土工程中心的研究人员合作完成。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ximin He其他文献

Antagonistic-contracting high-power photo-oscillators for multifunctional actuations
用于多功能驱动的对抗性收缩高功率光振荡器
  • DOI:
    10.1038/s41563-024-02035-3
  • 发表时间:
    2024-10-24
  • 期刊:
  • 影响因子:
    38.500
  • 作者:
    Yusen Zhao;Zixiao Liu;Pengju Shi;Chi Chen;Yousif Alsaid;Yichen Yan;Ximin He
  • 通讯作者:
    Ximin He
Decentralized Estimation and Control of a Soft Robotic Arm
软机械臂的分散估计和控制
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sachin Shivakumar;Daniel M. Aukes;S. Berman;Ximin He;R. Fisher;H. Marvi;M. Peet
  • 通讯作者:
    M. Peet
702: LOSS OF SMOOTH MUSCLE CELL PIEZO1 LEADS TO IMPAIRED CONTRACTILITY IN THE SMALL BOWEL
  • DOI:
    10.1016/s0016-5085(22)60421-9
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Geoanna Bautista;Yingjie Du;Nicolle Martin;Michael Matthews;Nam Phuong N. Nguyen;R. Sergio Solorzano-Vargas;Elmira Tokhtaeva;Michael Lewis;Matthias Stelzner;Ximin He;James C. Dunn;Martin G. Martin
  • 通讯作者:
    Martin G. Martin
Miniaturized Untethered Soft Robots Using Hydrogel-based Soft Voxel Actuators*
使用基于水凝胶的软体素致动器的小型化无束缚软机器人*
1100 THE ROLE OF SMOOTH MUSCLE CELL PIEZO1 IN MEDIATING BIOMECHANICAL STRETCHING OF THE SMALL BOWEL
  • DOI:
    10.1016/s0016-5085(20)31223-3
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Geoanna Bautista;Yingjie Du;Nicolle Martin;Nam P. Nguyen;Mutian Hua;Elmira Tokhtaeva;R. Sergio Solorzano-Vargas;Ximin He;Matthias G. Stelzner;James C. Dunn;Martin G. Martin
  • 通讯作者:
    Martin G. Martin

Ximin He的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ximin He', 18)}}的其他基金

I-Corps: Technology Towards Next Generation Batteries
I-Corps:下一代电池技术
  • 批准号:
    2317180
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: Bioinspired Adaptively Reconfigurable Material Systems for Programmable and Autonomous Metal Ion Separations
职业:用于可编程和自主金属离子分离的仿生自适应可重构材料系统
  • 批准号:
    1724526
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: Bioinspired Adaptively Reconfigurable Material Systems for Programmable and Autonomous Metal Ion Separations
职业:用于可编程和自主金属离子分离的仿生自适应可重构材料系统
  • 批准号:
    1552690
  • 财政年份:
    2016
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似海外基金

Multi-Scale Experimental and Computational Investigation of Microscale Origins of Ductile Failure
延性破坏微观起源的多尺度实验和计算研究
  • 批准号:
    2334678
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Fatigue Characterization of Ultrahigh Strength and Ductile Mg-Gd-Y-Zn-Zr Alloy with Hierarchical Anisotropic Nanostructure
多级各向异性纳米结构超高强韧性Mg-Gd-Y-Zn-Zr合金的疲劳表征
  • 批准号:
    22KF0310
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
EAR-PF: Experimental Constraints on Dating Ductile Deformation with Titanite
EAR-PF:用钛矿测定延性变形的实验约束
  • 批准号:
    2204440
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Fellowship Award
An assessment of low-temperature, ductile lithospheric deformation using existing broadband seismic data from around South Island, New Zealand
使用新西兰南岛周围现有的宽带地震数据评估低温、延性岩石圈变形
  • 批准号:
    2316757
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Making Strong Alloys Ductile and Hydrogen-Tolerant via Tuning Nanogradients
通过调整纳米梯度使强合金具有延展性和耐氢性
  • 批准号:
    DP230101228
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Projects
CAREER: Understanding Microstructure Evolution and Deformation Mechanism of Strong yet Ductile Nanolamellar High-Entropy Alloys Produced by Additive Manufacturing
职业:了解增材制造生产的强韧纳米层状高熵合金的微观结构演变和变形机制
  • 批准号:
    2238204
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
ERI: Understanding Austenite Refinement Mechanism in Nickel-Alloyed Ductile Cast Irons
ERI:了解镍合金球墨铸铁中的奥氏体细化机制
  • 批准号:
    2301570
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Theoretical development of super-ductile, super-tough, and super-strong high entropy ceramics
超韧、超韧、超强高熵陶瓷理论发展
  • 批准号:
    22KF0241
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Multiphysics of bifurcation phenomenon in nanostructures: Mechanical design of controlling brittle-ductile transition
纳米结构分岔现象的多物理场:控制脆塑转变的机械设计
  • 批准号:
    23H01295
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Ductile AAMs Recycled Aggregate Concrete for Carbon Footprint Reduction
延性 AAM 再生骨料混凝土可减少碳足迹
  • 批准号:
    23K04126
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了