CAREER: Understanding Microstructure Evolution and Deformation Mechanism of Strong yet Ductile Nanolamellar High-Entropy Alloys Produced by Additive Manufacturing

职业:了解增材制造生产的强韧纳米层状高熵合金的微观结构演变和变形机制

基本信息

  • 批准号:
    2238204
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-15 至 2028-08-31
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL SUMMARYAdditive manufacturing, also called 3D printing, is a new paradigm to produce net-shaped components layer by layer for a broad range of technological applications in automotive, aerospace, biomedical and other industries. In addition to vast design freedom, the rapid laser melting during additive manufacturing can produce highly refined structures at the nanoscale in metals for achieving high strength. However, high-strength nanostructured metals often suffer from limited ductility, which is an ability to be stretched without breaking. This strength-ductility tradeoff has been a long-standing challenge in materials science and the quest for materials that can simultaneously enhance strength and ductility has been a long-sought-after goal. High-entropy alloys (HEAs) are a new class of materials that contain high concentrations of five or more different elements in near equal atomic proportions, in contrast to traditional alloys that are primarily based on one major element with some minor alloying elements added. This Faculty Early Career Development (CAREER) award supports fundamental investigations into additive manufacturing of HEAs towards strength-ductility synergy beyond current benchmarks. This project is helping to understand the microstructural origin and deformation mechanism that govern the mechanical properties of 3D-printed HEAs by integrating microstructural characterization, mechanical testing, and computational modeling. The knowledge being established in this project will guide the development of strong yet tough metal alloys for various applications such as advanced energy systems, transportation, and defense. This CAREER award also includes a significant educational component that engages students in research across high school, undergraduate and graduate levels. Through broadening participation of underrepresented groups, this project is diversifying the next generation of researchers and STEM leaders in materials science and advanced manufacturing. TECHNICAL SUMMARY3D-printed metal alloys usually involve highly localized melting processes, strong temperature gradients, and fast cooling rates. These extreme printing conditions result in far-from-equilibrium states that enable microstructural refinement to the nanoscale for achieving high strength. However, high-strength nanostructured metal alloys often suffer from limited ductility, known as the strength-ductility tradeoff. Through harnessing the extreme printing conditions of laser additive manufacturing and favorable compositional effect of HEAs, a unique type of hierarchical microstructure in the form of dual-phase nanolamellae embedded in microscale eutectic colonies is achieved in 3D-printed eutectic HEAs. This process gives rise to an exceptional combination of strength and ductility. This CAREER award is investigating the fundamental processing-structure-property relationship in these strong yet ductile nanolamellar EHEAs produced by additive manufacturing. The scientific objectives in this study are to: 1) Understand how laser printing protocols affect the solidification microstructure and mechanical properties of 3D-printed eutectic HEAs. Process-sensitive thermal modeling will be developed to unveil the physical link between the complex printing parameters and the solidification microstructure and resulting mechanical properties. 2) Unravel the deformation mechanism and micromechanical response of 3D-printed eutectic HEAs by in situ neutron diffraction and transmission electron microscopy. 3) Elucidate the phase transformation pathways in 3D-printed eutectic HEAs upon post-printing heat treatment. A fundamental investigation of the phase transformation pathways and kinetics during annealing of the far-from-equilibrium 3D-printed HEAs are being performed to expand the palette for materials design. The mechanistic insights and design motifs being provided by this CAREER project have broad implications for the development of hierarchical, multi-phase, nanostructured alloys with excellent mechanical properties. This award also encompasses an educational and outreach plan to advance research training and education of next-generation students and underrepresented groups. New outreach initiatives such as 3D printing workshops and a summer-enrichment program will be developed to inspire women and underrepresented minorities and increase the diversity of our future workforce in materials science and advanced manufacturing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
增材制造,也称为3D打印,是一种逐层生产网状部件的新模式,适用于汽车,航空航天,生物医学和其他行业的广泛技术应用。除了巨大的设计自由度外,增材制造过程中的快速激光熔化还可以在金属中产生纳米级的高度精细结构,以实现高强度。然而,高强度纳米结构金属通常具有有限的延展性,这是一种拉伸而不断裂的能力。这种强度-延展性的权衡一直是材料科学中的一个长期挑战,并且对能够同时提高强度和延展性的材料的追求一直是长期追求的目标。高熵合金(HEAs)是一类新的材料,它含有高浓度的五种或更多种不同元素,原子比例接近相等,而传统合金主要基于一种主要元素,添加一些次要合金元素。该学院早期职业发展(CAREER)奖支持对HEAs增材制造的基础研究,以实现超越当前基准的强度-延展性协同作用。该项目通过整合微结构表征、机械测试和计算建模,帮助了解控制3D打印HEAs机械性能的微结构起源和变形机制。在这个项目中建立的知识将指导开发用于各种应用的坚固而坚韧的金属合金,如先进的能源系统,运输和国防。该职业奖还包括一个重要的教育组成部分,让学生参与高中,本科和研究生水平的研究。通过扩大代表性不足的群体的参与,该项目正在使材料科学和先进制造业的下一代研究人员和STEM领导者多样化。3D打印的金属合金通常涉及高度局部化的熔化过程、强温度梯度和快速冷却速率。这些极端的印刷条件导致远离平衡状态,使得微观结构细化到纳米级,以实现高强度。然而,高强度纳米结构的金属合金通常遭受有限的延展性,称为强度-延展性折衷。通过利用激光增材制造的极端打印条件和HEAs的有利成分效应,在3D打印的共晶HEAs中实现了嵌入微尺度共晶团中的双相纳米颗粒形式的独特类型的分层微结构。这个过程产生了强度和延展性的特殊组合。这个CAREER奖正在研究这些通过增材制造生产的坚固而具有延展性的纳米层EHEAs的基本加工-结构-性能关系。本研究的科学目标是:1)了解激光打印协议如何影响3D打印共晶HEAs的凝固微观结构和机械性能。将开发对工艺敏感的热建模,以揭示复杂的打印参数与凝固微观结构和由此产生的机械性能之间的物理联系。2)通过原位中子衍射和透射电子显微镜揭示3D打印共晶HEAs的变形机制和微观力学响应。3)阐明打印后热处理时3D打印共晶HEAs中的相变途径。正在对远离平衡的3D打印HEAs退火过程中的相变途径和动力学进行基础研究,以扩展材料设计的调色板。该CAREER项目提供的机械见解和设计主题对开发具有优异机械性能的分级、多相、纳米结构合金具有广泛的意义。该奖项还包括一项教育和推广计划,以促进下一代学生和代表性不足群体的研究培训和教育。新的推广计划,如3D打印研讨会和夏季丰富计划,将被开发,以激励妇女和代表性不足的少数民族,并增加我们未来的劳动力在材料科学和先进制造的多样性。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响力审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wen Chen其他文献

ADCLUS and INDCLUS: analysis, experimentation, and meta-heuristic algorithm extensions
ADCLUS 和 INDCLUS:分析、实验和元启发式算法扩展
A survey of models of ultraslow diffusion in heterogeneous materials
异质材料中超慢扩散模型的调查
  • DOI:
    10.1115/1.4044055
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    14.3
  • 作者:
    Yingjie Liang;Shuhong Wang;Wen Chen;Zhifang Zhou;Richard L.Magin
  • 通讯作者:
    Richard L.Magin
Host-guest interaction between brazilin and hydroxypropyl-β-cyclodextrin: Preparation, inclusion mode, molecular modelling and characterization
巴西林和羟丙基-β-环糊精之间的主客体相互作用:制备、包合模式、分子建模和表征
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Li-Juan Yang;Qing Chang;Shu-Ya Zhou;Yun-Han Yang;Fu-Ting Xia;Wen Chen;Minyan Li;Xiao-Dong Yang
  • 通讯作者:
    Xiao-Dong Yang
Photoelectrochemical behavior of TiO2 nanorod arrays decorated with CuInS2 quantum dots
CuInS2量子点修饰的TiO2纳米棒阵列的光电化学行为
  • DOI:
    10.1016/j.apsusc.2013.12.003
  • 发表时间:
    2014-02
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Zhuoyin Peng,;Yueli Liu;Yinghan Zhao;Keqiang Chen;Valery Kovalev;Wen Chen
  • 通讯作者:
    Wen Chen
Dual-Tone Raman Study of Optical Picocavities
光学皮腔的双音拉曼研究

Wen Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wen Chen', 18)}}的其他基金

IRES Track II: A US-France ASI for Industrial Risk Management in Active Diagnosis, Accurate Characterization, and Reliable Mitigation with Resilience
IRES Track II:美法 ASI,用于主动诊断、准确表征和具有弹性的可靠缓解方面的工业风险管理
  • 批准号:
    2153858
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: Fundamental Investigation of Microscale Residual Stresses in Additively Manufactured Stainless Steel
合作研究:增材制造不锈钢中微尺度残余应力的基础研究
  • 批准号:
    2004429
  • 财政年份:
    2020
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: Nanoimprinting of High Aspect-Ratio Nanostructures in Thermoplastic Polymers Using Metallic Glass Roller Molds
合作研究:使用金属玻璃辊模具在热塑性聚合物中进行高纵横比纳米结构的纳米压印
  • 批准号:
    1927621
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RII Track-4: NSF: Understanding Microstructure Evolution in Stimuli-Responsive Yield-Stress Fluid-Assisted 3D Printing: Linking Microstructures to Macroscale Rheological Properties
RII Track-4:NSF:了解刺激响应屈服应力流体辅助 3D 打印中的微观结构演化:将微观结构与宏观流变特性联系起来
  • 批准号:
    2229004
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
CAREER: Understanding the Role of Spin-Dynamics in the Formation of Magnetic Microstructure
职业:了解自旋动力学在磁性微结构形成中的作用
  • 批准号:
    2143610
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CAREER: Understanding Microstructure Evolution and Mechanical Properties of High-rate Additively Deposited Nickel-based Superalloy to Enable Future Clean-energy Manufacturing
职业:了解高速增材沉积镍基高温合金的微观结构演变和机械性能,以实现未来的清洁能源制造
  • 批准号:
    2143926
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Understanding Microstructure Evolution and Control During Hot Deformation: Application to Solid State Joining of High Strength Alloys
了解热变形过程中的微观结构演变和控制:在高强度合金固态连接中的应用
  • 批准号:
    RGPIN-2018-03889
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Discovery Grants Program - Individual
Atomistic understanding of microstructure formation based on metadynamics
基于元动力学的微观结构形成的原子理解
  • 批准号:
    22H01754
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Augmented serial blockface histology: Toward a better understanding of 3D tissue microstructure
增强串行块面组织学:更好地理解 3D 组织微观结构
  • 批准号:
    RGPIN-2020-06109
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding of microstructure and shape memory characteristics of SLM Ti-Nb alloys
了解SLM Ti-Nb合金的微观结构和形状记忆特性
  • 批准号:
    21K03814
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding Microstructure Evolution and Control During Hot Deformation: Application to Solid State Joining of High Strength Alloys
了解热变形过程中的微观结构演变和控制:在高强度合金固态连接中的应用
  • 批准号:
    RGPIN-2018-03889
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Discovery Grants Program - Individual
Augmented serial blockface histology: Toward a better understanding of 3D tissue microstructure
增强串行块面组织学:更好地理解 3D 组织微观结构
  • 批准号:
    RGPIN-2020-06109
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Understanding the Combined Effect of Microstructure and Topology on the Mechanical Behavior of Additively Manufactured Lattice Structures
职业:了解微观结构和拓扑对增材制造晶格结构机械行为的综合影响
  • 批准号:
    2223314
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了