EAGER/Collaborative Research:Science-Based Exploration of Invariant Signatures of Architecture/Engineering/Construction Objects to Enable Interoperability of Building Info Modeling

EAGER/协作研究:基于科学的建筑/工程/施工对象不变特征的探索,以实现建筑信息建模的互操作性

基本信息

  • 批准号:
    1745378
  • 负责人:
  • 金额:
    $ 11.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Building Information Modeling integrates 3D models with physical and functional characteristics of an infrastructure project and has the potential to facilitate the exchange of information between different parties involved in the same project throughout its lifecycle, ranging from design and construction to maintenance and operation, and beyond. However, the fundamental problem -- lack of interoperability (ie., inability to exchange information between different platforms), due to model inconsistency and missing information -- prevents the exchange of such information. Existing research efforts to address this lack of interoperability have been heavily focused on standardization and semantic modeling. These standard methods do not address the underlying problem and still depend on the computer models involved. This EArly-concept Grant for Exploratory Research (EAGER) project aims to both scientifically and empirically study the intrinsic properties and discover invariant signatures of architecture, engineering, and construction (AEC) objects, such as footings, slabs, walls, beams, and columns, to support seamless and universal interoperability of Building Information Modeling. Invariant signatures of an AEC object are defined as a set of intrinsic properties (e.g., geometry, location, material) of the object that distinguish itself from other objects and that do not change with software implementation, modeling decisions, and/or language and cultural contexts. An interdisciplinary approach involving geometry theorems, computer algorithms, and material mechanics will be employed to explore and quantify these intrinsic properties. If successful, the approach is expected to open the door for full automation of building information modeling analysis, which will significantly improve the project performance in all respects.The underlying hypothesis of the project is that invariant signatures of an AEC object collectively defined by the Cartesian points-based geometric, relative location and orientation, and material mechanical properties will enable seamless and universal interoperability of building information modeling (BIM) software in various analysis phases from architectural design and preliminary structural design to detailed structural analysis and construction cost estimation. The project is divided into two thrusts: 1) test the hypothesis particularly on the kinds of geometric, locational and material signatures that can be identified as inherent signatures from a wide range of AEC objects; 2) test the ability of discovered signatures to support BIM interoperability in the automated quantity takeoff and structural analysis scenarios. Publicly available BIM data will be used to support the exploration of the invariant signatures and the testing of these signatures. This project is the first systematic effort designated to test the idea of leveraging the intrinsic properties of AEC objects to support BIM interoperability, which is radically different from the existing efforts that are focused on data schema standardization and/or term-based semantics of AEC objects. If the underlying hypothesis is supported, this research has the potential to transform the way future BIM standards are developed and used to support seamless and universal interoperability of BIM models among all modeling and engineering analysis tasks. The results of this research could be widely applicable in construction engineering and beyond, and could ultimately lead to: (1) seamless and universal interoperability of BIM models; (2) full automation of BIM analysis; and (3) optimized specifications of material selections for future construction in different environments. The methods and results of this project will be integrated into university coursework at both collaborating institutions. This project will also broaden the participation of underrepresented groups by giving priority to women/minority students when recruiting the research assistants.
建筑信息建模将3D模型与基础设施项目的物理和功能特征集成在一起,并有可能促进同一项目在其整个生命周期(从设计和施工到维护和运营等)中所涉及的不同各方之间的信息交换。然而,根本问题--缺乏互操作性(即,由于模型不一致和信息缺失,无法在不同平台之间交换信息),这阻碍了此类信息的交换。现有的研究工作,以解决这一缺乏互操作性,主要集中在标准化和语义建模。这些标准方法并没有解决根本问题,仍然依赖于所涉及的计算机模型。EARLY概念探索性研究资助(EAGER)项目旨在科学和经验地研究建筑,工程和施工(AEC)对象的内在属性并发现不变的签名,如基脚,楼板,墙壁,梁和柱,以支持建筑信息建模的无缝和通用互操作性。AEC对象的不变签名被定义为一组内在属性(例如,几何形状、位置、材料),其将自身与其它对象区分开并且不随软件实现、建模决策和/或语言和文化上下文而改变。涉及几何定理,计算机算法和材料力学的跨学科方法将被用来探索和量化这些内在属性。如果成功,该方法有望为建筑信息建模分析的全自动化打开大门,这将显著提高项目在各个方面的性能。该项目的基本假设是,由基于笛卡尔点的几何、相对位置和方向共同定义的AEC对象的不变特征,和材料力学性能将实现建筑信息建模(BIM)的无缝和通用互操作性从建筑设计和初步结构设计到详细结构分析和施工成本估算的各个分析阶段的软件。该项目分为两个重点:1)测试假设,特别是几何,位置和材料签名的类型,这些签名可以被识别为来自各种AEC对象的固有签名; 2)测试发现的签名在自动数量起飞和结构分析场景中支持BIM互操作性的能力。公开可用的BIM数据将用于支持不变签名的探索和这些签名的测试。该项目是第一个系统性的努力,旨在测试利用AEC对象的内在属性来支持BIM互操作性的想法,这与现有的致力于AEC对象的数据模式标准化和/或基于术语的语义的努力截然不同。如果基本假设得到支持,这项研究有可能改变未来BIM标准的开发方式,并用于支持所有建模和工程分析任务之间BIM模型的无缝和通用互操作性。这项研究的结果可以广泛应用于建筑工程及其他领域,并最终导致:(1)BIM模型的无缝和通用互操作性;(2)BIM分析的全自动化;以及(3)优化材料选择规范,以供未来在不同环境中施工。该项目的方法和成果将纳入两个合作机构的大学课程。该项目还将扩大代表性不足群体的参与,在招聘研究助理时优先考虑妇女/少数民族学生。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Invariant Signatures of Architecture, Engineering, and Construction Objects to Support BIM Interoperability between Architectural Design and Structural Analysis
建筑、工程和施工对象的不变签名支持建筑设计和结构分析之间的 BIM 互操作性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaoyun Shao其他文献

Reproducing response spectra in shaking table tests of nonstructural components
非结构部件振动台试验中再现响应谱
  • DOI:
    10.1016/j.soildyn.2019.105835
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Huimeng Zhou;Xiaoyun Shao;Yingpeng Tian;Guoxian Xu;Qingxue Shang;Haiyang Li;Tao Wang
  • 通讯作者:
    Tao Wang
Distributed real-time hybrid simulation method for dynamic response evaluation of floating wind turbines
漂浮式风力发电机动态响应评估的分布式实时混合仿真方法
  • DOI:
    10.1016/j.engstruct.2024.117464
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    H. L. Sadraddin;Xiaoyun Shao
  • 通讯作者:
    Xiaoyun Shao
Real-time hybrid model test to replicate high-rise building resonant vibration under wind loads
实时混合模型测试,复制风荷载下高层建筑的共振振动
  • DOI:
    10.1016/j.tws.2024.111559
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Huimeng Zhou;Xiaoyun Shao;Jianwen Zhang;Hongcan Yao;Yanhui Liu;Tan pin;Yangyang Chen;Xu Li;Zhang Yin;Gong Wei
  • 通讯作者:
    Gong Wei
Recursive Predictive Optimal Control Algorithm for Real-Time Hybrid Simulation of Vehicle–Bridge Coupling System
车桥耦合系统实时混合仿真的递归预测最优控制算法
Deficiency of integrin β4 contributes bronchopulmonary dysplasia by compromising cellular stability through the activation of RhoA-(ZO-1) signaling pathways
整联蛋白β4 的缺乏通过激活 RhoA-(ZO-1)信号通路损害细胞稳定性,从而导致支气管肺发育不良。
  • DOI:
    10.1038/s41598-025-05983-1
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Yinxiu Chi;Xianhui Wang;Dongliang Zhang;Jingjing Han;Xiaoyun Shao;Yang Xiang;Linhong Deng
  • 通讯作者:
    Linhong Deng

Xiaoyun Shao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 11.18万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 11.18万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 11.18万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 11.18万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 11.18万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 11.18万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 11.18万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 11.18万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 11.18万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 11.18万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了