RTG: Advancing Machine Learning - Causality and Interpretability

RTG:推进机器学习 - 因果关系和可解释性

基本信息

  • 批准号:
    1745640
  • 负责人:
  • 金额:
    $ 190.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Faculty in the Statistics Department at the University of California, Berkeley develop an integrated program of research and education to support undergraduate research experiences, graduate research traineeships, and postdoctoral fellowships. The common research theme of the training activities is how to leverage the predictive power of statistical machine learning to address questions of causality and interpretability. The project aims to prepare the next generation of statisticians and data scientists to tackle new, important problems that arise from the analysis of massive data. Intuitively it seems that more reliable and precise inferences can be drawn from larger data sets. However, decisions and interventions must be interpretable and justified by statistical measures of uncertainty, which are challenging in this setting. This program will infuse ideas, energy, and resources in an integrated way at all levels of the educational program, from the undergraduate major to the postdoctoral experience, recruiting students and preparing them to participate in the extraordinary range of opportunities in this exciting new field.The research in this project will pursue theory to bridge the gap between causal inference and machine learning research, including high-dimensional inference, multiple testing, causal inference with interference, and causality and gene expression. The project is at the frontiers of statistics and data science, bridging the divide between machine learning and causal inference with potential impact far beyond the discipline of statistics. Plans are to redesign and expand the engagement of undergraduates in research through a graduate student mentorship program; to design new courses at the graduate and undergraduate levels, including an introductory course that builds on connections between data science, social sciences, and ethics; and to enhance graduate research training via a research symposium. The program will include a graduate professional development training series that addresses topics in technology, presentation and writing skills, and building an inclusive science community. The project will also provide significant training in teaching for graduate students and postdoctoral associates. Through a combination of channels, the innovations in training will spread to other institutions and disciplines, e.g., demonstrating the power of machine learning in policy and education settings where causal inference is central. The program also includes the development of educational materials with plans to disseminate them widely throughout the broader community. The project will emphasize recruitment and retention efforts targeted to increase the diversity of domestic students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
加州大学伯克利分校统计学系的教师开发了一个研究和教育的综合项目,以支持本科生的研究经历、研究生的研究培训和博士后奖学金。培训活动的共同研究主题是如何利用统计机器学习的预测能力来解决因果关系和可解释性问题。该项目旨在培养下一代统计学家和数据科学家,以解决大量数据分析中出现的新的重要问题。从直觉上看,似乎可以从更大的数据集中得出更可靠、更精确的推断。然而,决策和干预必须是可解释的,并通过不确定性的统计措施来证明其合理性,这在这种情况下是具有挑战性的。该项目将以一种整合的方式为教育项目的各个层面注入思想、精力和资源,从本科专业到博士后经验,招募学生并为他们参与这个令人兴奋的新领域的非凡机会做好准备。本项目的研究将通过理论来弥合因果推理和机器学习研究之间的差距,包括高维推理、多重测试、带干扰的因果推理、因果关系和基因表达。该项目处于统计学和数据科学的前沿,弥合了机器学习和因果推理之间的鸿沟,其潜在影响远远超出了统计学的范畴。计划是通过研究生指导计划重新设计和扩大本科生对研究的参与;在研究生和本科生阶段设计新课程,包括建立在数据科学、社会科学和伦理学之间联系的入门课程;并通过研究研讨会加强研究生的研究训练。该项目将包括一个研究生专业发展培训系列,涉及技术、演讲和写作技巧等主题,以及建立一个包容性的科学社区。该项目还将为研究生和博士后提供重要的教学培训。通过多种渠道的结合,培训方面的创新将传播到其他机构和学科,例如,在因果推理为中心的政策和教育环境中展示机器学习的力量。该方案还包括编写教育材料,并计划在更广泛的社区中广泛传播。该项目将强调以增加国内学生多样性为目标的招生和留用工作。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Synthetic controls with staggered adoption
The Three Stages of Learning Dynamics in High-dimensional Kernel Methods
高维核方法中学习动力学的三个阶段
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nikhil Ghosh, Song Mei
  • 通讯作者:
    Nikhil Ghosh, Song Mei
More Style, Less Work: Card-style Data Decrease Risk-limiting Audit Sample Sizes
更多风格,更少工作:卡片式数据减少风险限制审计样本量
  • DOI:
    10.1145/3457907
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Glazer, Amanda K.;Spertus, Jacob V.;Stark, Philip B.
  • 通讯作者:
    Stark, Philip B.
Deconstructing Distributions: A Pointwise Framework of Learning
  • DOI:
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gal Kaplun;Nikhil Ghosh;S. Garg;B. Barak;Preetum Nakkiran
  • 通讯作者:
    Gal Kaplun;Nikhil Ghosh;S. Garg;B. Barak;Preetum Nakkiran
Reading to write
读来写
  • DOI:
    10.1111/1740-9713.01469
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nolan, Deborah;Stoudt, Sara
  • 通讯作者:
    Stoudt, Sara
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peng Ding其他文献

Identify Liver X receptor β modulator building blocks by developing a fluorescence polarization-based assay
通过开发基于荧光偏振的测定来识别肝脏 X 受体 β 调节器构建模块
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Zizhen Zhang;Hao Chen;Ziyang Chen;Peng Ding;Yingchen Ju;Qiong Gu;Jun Xu;Huihao Zhou
  • 通讯作者:
    Huihao Zhou
Structural insights into the ligand recognition and catalysis of the key aminobutanoyltransferase CntL in staphylopine biosynthesis
葡萄碱生物合成中关键氨基丁酰基转移酶 CntL 的配体识别和催化的结构见解
  • DOI:
    10.1096/fj.202002287rr
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhiteng Luo;Siting Luo;Yingchen Ju;Peng Ding;Jun Xu;Qiong Gu;Huihao Zhou
  • 通讯作者:
    Huihao Zhou
Shaking table test on seismic response characteristics of prefabricated subway station structure
装配式地铁车站结构地震响应特性振动台试验
A Novel Predictor of Survival with Renal Cell Carcinoma After Nephrectomy
肾切除术后肾细胞癌生存的新预测因子
  • DOI:
    10.1089/end.2016.0786
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Peng Ding;He Zhi-song;Li Xue-song;Tang Qi;Zhang Lei;Yan Kai-wei;Yu Xiao-teng;Zhang Cui-jian;Zhou Li-qun
  • 通讯作者:
    Zhou Li-qun
Maximum entropy thresholding segmentation research in 3D images
3D图像中最大熵阈值分割研究
  • DOI:
    10.1109/icacc.2010.5486985
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li Mingdong;Peng Ding;Xing Zi
  • 通讯作者:
    Xing Zi

Peng Ding的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peng Ding', 18)}}的其他基金

CAREER: The Design-Based Perspective of Causal Inference in Complex Experiments
职业:复杂实验中因果推理的基于设计的视角
  • 批准号:
    1945136
  • 财政年份:
    2020
  • 资助金额:
    $ 190.82万
  • 项目类别:
    Continuing Grant
Statistics in the Big Data Era
大数据时代的统计
  • 批准号:
    2005243
  • 财政年份:
    2020
  • 资助金额:
    $ 190.82万
  • 项目类别:
    Standard Grant
Collaborative Research: Theoretical and Methodological Frameworks for Causal Inference of Peer Effects
合作研究:同伴效应因果推断的理论和方法框架
  • 批准号:
    1713152
  • 财政年份:
    2017
  • 资助金额:
    $ 190.82万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 190.82万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342497
  • 财政年份:
    2024
  • 资助金额:
    $ 190.82万
  • 项目类别:
    Standard Grant
Collaborative Research: Advancing the Science of STEM Interest Development through Educational Gameplay with Machine Learning and Data-driven Interviews
合作研究:通过机器学习和数据驱动访谈的教育游戏推进 STEM 兴趣发展科学
  • 批准号:
    2301173
  • 财政年份:
    2023
  • 资助金额:
    $ 190.82万
  • 项目类别:
    Continuing Grant
Collaborative Research: Advancing the Science of STEM Interest Development through Educational Gameplay with Machine Learning and Data-driven Interviews
合作研究:通过机器学习和数据驱动访谈的教育游戏推进 STEM 兴趣发展科学
  • 批准号:
    2301172
  • 财政年份:
    2023
  • 资助金额:
    $ 190.82万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
  • 批准号:
    2347592
  • 财政年份:
    2023
  • 资助金额:
    $ 190.82万
  • 项目类别:
    Standard Grant
Advancing machine learning to achieve real-world early detection and personalised disease outcome prediction of inflammatory arthritis
推进机器学习以实现炎症性关节炎的真实早期检测和个性化疾病结果预测
  • 批准号:
    EP/Y019393/1
  • 财政年份:
    2023
  • 资助金额:
    $ 190.82万
  • 项目类别:
    Research Grant
CAREER: Advancing Atomic-Level Understanding of Kinetically Driven Solid-Solid Phase Transitions from First Principles and Machine Learning
职业:从第一原理和机器学习推进对动力学驱动的固-固相变的原子级理解
  • 批准号:
    2238516
  • 财政年份:
    2023
  • 资助金额:
    $ 190.82万
  • 项目类别:
    Continuing Grant
Advancing synthesis prediction with machine learning - A data driven/mechanistic approach
通过机器学习推进综合预测 - 数据驱动/机械方法
  • 批准号:
    2886146
  • 财政年份:
    2023
  • 资助金额:
    $ 190.82万
  • 项目类别:
    Studentship
Advancing Honey Authentication and Traceability Using Fluorescence Excitation-Emission Spectroscopy Coupled with Machine Learning Molecular Fingerprint Analysis
使用荧光激发发射光谱与机器学习分子指纹分析相结合推进蜂蜜认证和可追溯性
  • 批准号:
    10080439
  • 财政年份:
    2023
  • 资助金额:
    $ 190.82万
  • 项目类别:
    Collaborative R&D
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
  • 批准号:
    2402311
  • 财政年份:
    2023
  • 资助金额:
    $ 190.82万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了