Collaborative Research: Advancing the Science of STEM Interest Development through Educational Gameplay with Machine Learning and Data-driven Interviews
合作研究:通过机器学习和数据驱动访谈的教育游戏推进 STEM 兴趣发展科学
基本信息
- 批准号:2301172
- 负责人:
- 金额:$ 69.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The integration of digital games into STEM education has been an active area of research for quite some time, but details about how students' interactions with educational games may or may not reflect their interest is more difficult to obtain. This project will use a Minecraft-based simulation environment to advance understanding of how educational digital games can support the development of enduring STEM interest. Middle school students in summer and afterschool camps will experiment with a variety of scientific topics in the What-If Hypothetical Implementations in Minecraft (WHIMC) learning system while researchers interview them at key points in their gameplay to better understand how their interest is developing. In this way, the project will contextualize how decisions made by students while engaging with the educational game are related to their prior STEM interest and how they may, in turn, influence the development of enduring STEM interest. This work will contribute advanced tools and methodological resources for studying STEM learning and interest that will help broaden participation in STEM.Hidi and Renninger's (2006) model of interest development propose four phases that correspond with students' acquisition of knowledge on a topic. In the first two phases, students may need situational triggers (such as those that are afforded in popular digital games) to sustain their interest and motivation, but to advance to the later stages of sustained, individualized interest, they must also acquire knowledge. Research on how student STEM interest develops during learning activities has typically relied on a handful of methods, each with their own limitations. Standardized survey methods, for instance, may capture important changes in students' interest level, but do not necessarily capture important details on the processes required to increase students' interest. This project will take a novel approach, using machine learning to trigger an alert to researchers when the software detects an activity (or lack thereof) likely to be tied to student interest. This will allow researchers to capture the students' experiences in situ, interviewing them before they have time to either forget or reconceptualize the event. The studies will take place in the context of WHIMC, a Minecraft-based learning environment that provides afterschool and summer educational opportunities to low-income families and to students with backgrounds traditionally underrepresented in STEM. Researchers will triangulate the interviews with more traditional measures of interest development, log data of student activities, and measures of STEM knowledge to better understand how these experiences relate to student engagement and their development of sustained, individualized interest. In doing so, researchers can explore the range of ways in which interest emerges across diverse student populations.This project is supported by NSF's EDU Core Research (ECR) program. The ECR program emphasizes fundamental STEM education research that generates foundational knowledge in the field. Investments are made in critical areas that are essential, broad and enduring: STEM learning and STEM learning environments, broadening participation in STEM, and STEM workforce development. The program supports the accumulation of robust evidence to inform efforts to understand, build theory to explain, and suggest intervention and innovations to address persistent.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
将数字游戏整合到STEM教育中已经是一个活跃的研究领域很长一段时间了,但是关于学生与教育游戏的互动如何反映他们的兴趣的细节更难获得。该项目将使用基于Minecraft的模拟环境,以促进对教育数字游戏如何支持持久STEM兴趣发展的理解。参加夏令营和课后夏令营的中学生将在《我的世界》(WHIMC)学习系统中尝试各种科学主题,而研究人员将在游戏的关键点采访他们,以更好地了解他们的兴趣是如何发展的。通过这种方式,该项目将情境化学生在参与教育游戏时所做的决定如何与他们先前的STEM兴趣相关,以及他们如何反过来影响持久STEM兴趣的发展。这项工作将为研究STEM学习和兴趣提供先进的工具和方法资源,这将有助于扩大STEM的参与。Hidi和Renninger(2006)的兴趣发展模型提出了与学生获得主题知识相对应的四个阶段。在前两个阶段,学生可能需要情境触发(如流行的数字游戏中提供的)来维持他们的兴趣和动机,但要进入持续的个性化兴趣的后期阶段,他们还必须获得知识。关于学生在学习活动中如何培养STEM兴趣的研究通常依赖于少数方法,每种方法都有自己的局限性。例如,标准化的调查方法可能会捕捉到学生兴趣水平的重要变化,但不一定能捕捉到提高学生兴趣所需过程的重要细节。该项目将采用一种新颖的方法,当软件检测到可能与学生兴趣相关的活动(或缺乏活动)时,使用机器学习向研究人员发出警报。这将使研究人员能够现场捕捉学生的经历,在他们有时间忘记或重新概念化事件之前采访他们。这些研究将在WHIMC的背景下进行,WHIMC是一个基于Minecraft的学习环境,为低收入家庭和传统上在STEM中代表性不足的学生提供课后和暑期教育机会。研究人员将三角访谈与兴趣发展的更传统的措施,学生活动的日志数据,以及STEM知识的措施,以更好地了解这些经验如何与学生的参与和他们的发展持续,个性化的兴趣。在这样做的过程中,研究人员可以探索不同学生群体产生兴趣的各种方式。ECR计划强调基础STEM教育研究,产生该领域的基础知识。投资是在关键领域是必不可少的,广泛的和持久的:干学习和干学习环境,扩大参与干,干劳动力发展。该计划支持积累强有力的证据,为理解、建立理论解释和建议干预和创新以解决持续性问题提供信息。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luc Paquette其他文献
Investigating SMART Models of Self-Regulation and their Impact on Learning
研究自我调节的 SMART 模型及其对学习的影响
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Stephen Hutt;Jaclyn L. Ocumpaugh;J. M. Alexandra;L. Andres;Nigel Bosch;Luc Paquette;Gautam Biswas;Ryan S. Baker - 通讯作者:
Ryan S. Baker
Interpretable neural networks vs. expert-defined models for learner behavior detection
可解释的神经网络与专家定义的学习者行为检测模型
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Juan D. Pinto;Luc Paquette;Nigel Bosch - 通讯作者:
Nigel Bosch
Towards a Unified Framework for Evaluating Explanations
建立一个评估解释的统一框架
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Juan D. Pinto;Luc Paquette - 通讯作者:
Luc Paquette
Detector-driven classroom interviewing: focusing qualitative researcher time by selecting cases in situ
探测器驱动的课堂访谈:通过现场选择案例来集中定性研究人员的时间
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Ryan S. Baker;Stephen Hutt;Nigel Bosch;Jaclyn L. Ocumpaugh;Gautam Biswas;Luc Paquette;J. M. A. Andres;Nidhi Nasiar;Anabil Munshi - 通讯作者:
Anabil Munshi
Luc Paquette的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luc Paquette', 18)}}的其他基金
CAREER: Combining Human Judgment and Data-Driven Approaches for the Development of Interpretable Models of Student Behaviors: Applications to Computer Science Education
职业:结合人类判断和数据驱动的方法来开发可解释的学生行为模型:在计算机科学教育中的应用
- 批准号:
1942962 - 财政年份:2020
- 资助金额:
$ 69.8万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342498 - 财政年份:2024
- 资助金额:
$ 69.8万 - 项目类别:
Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
- 批准号:
2414607 - 财政年份:2024
- 资助金额:
$ 69.8万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341238 - 财政年份:2024
- 资助金额:
$ 69.8万 - 项目类别:
Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
- 批准号:
2414606 - 财政年份:2024
- 资助金额:
$ 69.8万 - 项目类别:
Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342497 - 财政年份:2024
- 资助金额:
$ 69.8万 - 项目类别:
Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
- 批准号:
2414608 - 财政年份:2024
- 资助金额:
$ 69.8万 - 项目类别:
Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
- 批准号:
2414605 - 财政年份:2024
- 资助金额:
$ 69.8万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341237 - 财政年份:2024
- 资助金额:
$ 69.8万 - 项目类别:
Continuing Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
- 批准号:
2414604 - 财政年份:2024
- 资助金额:
$ 69.8万 - 项目类别:
Continuing Grant
Collaborative Research: Advancing Collaborations for Equity in Marine and Climate Sciences
合作研究:推进海洋和气候科学公平合作
- 批准号:
2314916 - 财政年份:2023
- 资助金额:
$ 69.8万 - 项目类别:
Standard Grant