SBIR Phase I: Driving Timely Point-of-Care Treatment in Hospitals with a High Precision Bayesian Machine Learning Platform
SBIR 第一阶段:利用高精度贝叶斯机器学习平台推动医院及时的护理点治疗
基本信息
- 批准号:1746602
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase I project is to provide clinical decision support software that assists inpatient providers in improving care for preventable acute inpatient harms, and thereby reduce mortality and morbidity. This grant develops a cloud-based platform that applies machine learning (ML) algorithms in real-time on data extracted from Electronic Health Records (EHRs) and physiologic monitoring devices attached to a patient. The ML tools employed estimate the degree of reliability for each of the data elements as they are collected and integrates these signals to provide an accurate, individualized risk estimate of patient health over time in order to best guide patient treatment and allocation of hospital resources. Our initial target condition is sepsis, one of the most costly and most deadly diseases in hospitals. This grant develops an end-to-end system to provide risk assessment and implementation of timely treatment. For commercial potential, the underlying core technology can be extended to other clinical scenarios. The proposed project enables scaling of high-precision state-of-the-art Bayesian machine learning techniques that forecast the chance of acute deterioration. This includes tackling the challenges in scaling this machine learning system to function across many care providers, patients, and hospitals. To achieve these goals, this project will develop new methods for running machine learning algorithms in a distributed fashion in cloud computing settings, especially in distinguishing where multiple machines need to coordinate, and arguably more importantly, where they can avoid coordinating in training on data. Further, the project develops software to provide information back to providers so as to enable interventions that can alter patient trajectory. Here the software will encompass how to best use the resulting inferences in guiding care.
这一小型企业创新研究(SBIR)I期项目的更广泛影响/商业潜力是提供临床决策支持软件,帮助住院提供者改善对可预防的急性住院伤害的护理,从而降低死亡率和发病率。该资助开发了一个基于云的平台,该平台将机器学习(ML)算法实时应用于从电子健康记录(EHR)和附在患者身上的生理监测设备中提取的数据。所采用的ML工具估计每个数据元素的可靠性程度,因为它们被收集并整合这些信号,以提供随着时间的推移对患者健康的准确,个性化的风险估计,以便最好地指导患者治疗和医院资源的分配。我们最初的目标是败血症,这是医院中最昂贵和最致命的疾病之一。该赠款开发了一个端到端系统,以提供风险评估和及时治疗的实施。对于商业潜力,底层核心技术可以扩展到其他临床场景。拟议的项目能够扩展高精度最先进的贝叶斯机器学习技术,预测急性恶化的机会。这包括解决扩展这个机器学习系统以在许多护理提供者,患者和医院中发挥作用的挑战。为了实现这些目标,该项目将开发在云计算环境中以分布式方式运行机器学习算法的新方法,特别是在区分多台机器需要协调的地方,以及可以说更重要的是,它们可以避免在数据训练中协调。此外,该项目还开发了软件,向提供者提供信息,以便能够进行可以改变患者轨迹的干预。在这里,该软件将包括如何最好地使用由此产生的推论指导护理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Suchi Saria其他文献
A data-driven framework for identifying patient subgroups on which an AI/machine learning model may underperform
一个用于识别人工智能/机器学习模型可能表现不佳的患者亚组的数据驱动框架
- DOI:
10.1038/s41746-024-01275-6 - 发表时间:
2024-11-21 - 期刊:
- 影响因子:15.100
- 作者:
Adarsh Subbaswamy;Berkman Sahiner;Nicholas Petrick;Vinay Pai;Roy Adams;Matthew C. Diamond;Suchi Saria - 通讯作者:
Suchi Saria
Partial Identifiability in Discrete Data with Measurement Error
具有测量误差的离散数据的部分可辨识性
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Noam Finkelstein;Roy Adams;Suchi Saria;Ilya Shpitser - 通讯作者:
Ilya Shpitser
Biological research and self-driving labs in deep space supported by artificial intelligence
在人工智能支持下的深空生物研究和自动驾驶实验室
- DOI:
10.1038/s42256-023-00618-4 - 发表时间:
2023-03-23 - 期刊:
- 影响因子:23.900
- 作者:
Lauren M. Sanders;Ryan T. Scott;Jason H. Yang;Amina Ann Qutub;Hector Garcia Martin;Daniel C. Berrios;Jaden J. A. Hastings;Jon Rask;Graham Mackintosh;Adrienne L. Hoarfrost;Stuart Chalk;John Kalantari;Kia Khezeli;Erik L. Antonsen;Joel Babdor;Richard Barker;Sergio E. Baranzini;Afshin Beheshti;Guillermo M. Delgado-Aparicio;Benjamin S. Glicksberg;Casey S. Greene;Melissa Haendel;Arif A. Hamid;Philip Heller;Daniel Jamieson;Katelyn J. Jarvis;Svetlana V. Komarova;Matthieu Komorowski;Prachi Kothiyal;Ashish Mahabal;Uri Manor;Christopher E. Mason;Mona Matar;George I. Mias;Jack Miller;Jerry G. Myers;Charlotte Nelson;Jonathan Oribello;Seung-min Park;Patricia Parsons-Wingerter;R. K. Prabhu;Robert J. Reynolds;Amanda Saravia-Butler;Suchi Saria;Aenor Sawyer;Nitin Kumar Singh;Michael Snyder;Frank Soboczenski;Karthik Soman;Corey A. Theriot;David Van Valen;Kasthuri Venkateswaran;Liz Warren;Liz Worthey;Marinka Zitnik;Sylvain V. Costes - 通讯作者:
Sylvain V. Costes
Biomonitoring and precision health in deep space supported by artificial intelligence
人工智能支持下的深空生物监测与精准健康
- DOI:
10.1038/s42256-023-00617-5 - 发表时间:
2023-03-23 - 期刊:
- 影响因子:23.900
- 作者:
Ryan T. Scott;Lauren M. Sanders;Erik L. Antonsen;Jaden J. A. Hastings;Seung-min Park;Graham Mackintosh;Robert J. Reynolds;Adrienne L. Hoarfrost;Aenor Sawyer;Casey S. Greene;Benjamin S. Glicksberg;Corey A. Theriot;Daniel C. Berrios;Jack Miller;Joel Babdor;Richard Barker;Sergio E. Baranzini;Afshin Beheshti;Stuart Chalk;Guillermo M. Delgado-Aparicio;Melissa Haendel;Arif A. Hamid;Philip Heller;Daniel Jamieson;Katelyn J. Jarvis;John Kalantari;Kia Khezeli;Svetlana V. Komarova;Matthieu Komorowski;Prachi Kothiyal;Ashish Mahabal;Uri Manor;Hector Garcia Martin;Christopher E. Mason;Mona Matar;George I. Mias;Jerry G. Myers;Charlotte Nelson;Jonathan Oribello;Patricia Parsons-Wingerter;R. K. Prabhu;Amina Ann Qutub;Jon Rask;Amanda Saravia-Butler;Suchi Saria;Nitin Kumar Singh;Michael Snyder;Frank Soboczenski;Karthik Soman;David Van Valen;Kasthuri Venkateswaran;Liz Warren;Liz Worthey;Jason H. Yang;Marinka Zitnik;Sylvain V. Costes - 通讯作者:
Sylvain V. Costes
Individualized sepsis treatment using reinforcement learning
使用强化学习的个体化脓毒症治疗
- DOI:
10.1038/s41591-018-0253-x - 发表时间:
2018-11-05 - 期刊:
- 影响因子:50.000
- 作者:
Suchi Saria - 通讯作者:
Suchi Saria
Suchi Saria的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Suchi Saria', 18)}}的其他基金
FW-HTF: Human-Machine Teaming for Medical Decision Making
FW-HTF:用于医疗决策的人机协作
- 批准号:
1840088 - 财政年份:2019
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: Precision medicine and the management of infectious diseases
QuBBD:合作研究:精准医学和传染病管理
- 批准号:
1557742 - 财政年份:2015
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: Modeling Disease Trajectories in Patients with Complex, Multiphenotypic Conditions
SCH:INT:合作研究:对复杂、多表型病症患者的疾病轨迹进行建模
- 批准号:
1418590 - 财政年份:2014
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
ATLAS实验探测器Phase 2升级
- 批准号:11961141014
- 批准年份:2019
- 资助金额:3350 万元
- 项目类别:国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
- 批准号:41802035
- 批准年份:2018
- 资助金额:12.0 万元
- 项目类别:青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
- 批准号:61675216
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Phase-type分布的多状态系统可靠性模型研究
- 批准号:71501183
- 批准年份:2015
- 资助金额:17.4 万元
- 项目类别:青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
- 批准号:51201142
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
- 批准号:11101428
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
- 批准号:19374069
- 批准年份:1993
- 资助金额:6.4 万元
- 项目类别:面上项目
相似海外基金
Delineating the role of Matrin-3 in driving aberrant liquid-liquid phase separation that underpins ALS/FTD
描述 Matrin-3 在驱动支撑 ALS/FTD 的异常液-液相分离中的作用
- 批准号:
10581838 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Significance and Mechanisms of Phase Separation Mediated by Cancer-Driving Fusion Oncoprotein EML4-ALK as Revealed by High-Speed AFM
高速 AFM 揭示癌症驱动融合癌蛋白 EML4-ALK 介导的相分离的意义和机制
- 批准号:
22K07208 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating Mechanisms of RBM20 Liquid-liquid Phase Separation Driving Cardiomyocyte Physiology and Dilated Cardiomyopathy
RBM20液-液相分离驱动心肌细胞生理学和扩张型心肌病的机制研究
- 批准号:
10540300 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Investigating Mechanisms of RBM20 Liquid-liquid Phase Separation Driving Cardiomyocyte Physiology and Dilated Cardiomyopathy
RBM20液-液相分离驱动心肌细胞生理学和扩张型心肌病的机制研究
- 批准号:
10570894 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Determining the role of RNA in driving intracellular phase separation
确定 RNA 在驱动细胞内相分离中的作用
- 批准号:
526247-2018 - 财政年份:2018
- 资助金额:
$ 22.5万 - 项目类别:
University Undergraduate Student Research Awards
Driving forces in aqueous two-phase systems for vaccine development
疫苗开发的水性两相系统的驱动力
- 批准号:
1818906 - 财政年份:2018
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: Low-cost real-time perception system for self-driving consumer cars
SBIR第一阶段:用于自动驾驶消费汽车的低成本实时感知系统
- 批准号:
1820462 - 财政年份:2018
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
A new driving force in phase space of plasma turbulence
等离子体湍流相空间的新驱动力
- 批准号:
15K14282 - 财政年份:2015
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
SBIR Phase I:A Miniature Active Q-Switched Laser based on a Fast Space-Charge- Controlled Electro-Optic (SCC-EO) Deflector with Ultra-low Driving Voltage
SBIR 第一阶段:基于超低驱动电压的快速空间电荷控制电光 (SCC-EO) 偏转器的微型有源调Q激光器
- 批准号:
1249070 - 财政年份:2013
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase II: CoPilot - An Active Wheelchair Driving Aid for Independent Living
SBIR 第二阶段:CoPilot - 独立生活的主动轮椅驾驶辅助设备
- 批准号:
1256080 - 财政年份:2013
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant














{{item.name}}会员




