QuBBD: Collaborative Research: Precision medicine and the management of infectious diseases
QuBBD:合作研究:精准医学和传染病管理
基本信息
- 批准号:1557742
- 负责人:
- 金额:$ 1.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Infectious diseases place an enormous toll on public health, societies, and economies across the world. Effective control of an infectious disease is made challenging by complex disease dynamics, limited resources, and the need to continually adapt interventions to the evolving status of an epidemic. Driven by widespread recognition of the potential of big data, recent technological advances have made it possible to collect, curate, and access heterogeneous data on the evolution of an infectious disease in real-time. In light of recent and anticipated advances in big data, this project envisions that future management of infectious diseases will rely on knowledge-transfer systems that map real-time, heterogeneous data streams to recommendations for policy-makers managing an infectious disease. These recommendations might identify subgroups in the population that should be given highest priority for interventions or other resource allocations. However, science is years away from creating such a system as its implementation will require significant innovations in disease modeling, data-driven decision making, computing, and optimization. This award supports initiation of a collaborative research project that takes critical first steps toward these innovations by creating a blueprint for using big data and precision medicine to inform management of an infectious disease.The proposed research will develop a novel class of dynamical systems models that identifies subgroups in the population with homogeneous disease dynamics. Parameters indexing these models are estimated using maximum likelihood; then, by computing draws from the sampling distribution of these parameters, we apply Thompson sampling and model-based policy-search algorithms from precision medicine to identify optimal resource allocations to manage the spread of an epidemic. The proposed research bridges dynamical systems models with subgroup identification and data-driven resource allocation. This will create new knowledge and new lines of research in applied mathematics, statistics, and computer science. This award is supported by the National Institutes of Health Big Data to Knowledge (BD2K) Initiative in partnership with the National Science Foundation Division of Mathematical Sciences.
传染病给世界各地的公共卫生、社会和经济造成巨大损失。 由于复杂的疾病动态、有限的资源以及不断调整干预措施以适应流行病发展状况的需要,有效控制传染病面临着挑战。 在对大数据潜力的广泛认识的推动下,最近的技术进步使得实时收集、整理和访问有关传染病演变的异构数据成为可能。 鉴于大数据最近和预期的进展,该项目设想未来的传染病管理将依赖于知识转移系统,该系统将实时、异构数据流映射到为管理传染病的政策制定者提供建议。 这些建议可能会确定人口中应给予干预或其他资源分配最高优先级的亚群体。 然而,科学距离创建这样一个系统还需要数年时间,因为其实施需要在疾病建模、数据驱动决策、计算和优化方面进行重大创新。该奖项支持启动一个合作研究项目,该项目通过创建使用大数据和精准医学为传染病管理提供信息的蓝图,为这些创新迈出了关键的第一步。拟议的研究将开发一类新型动力系统模型,用于识别具有同质疾病动态的人群中的亚组。 使用最大似然估计索引这些模型的参数;然后,通过计算这些参数的抽样分布,我们应用汤普森抽样和精准医学中基于模型的策略搜索算法来确定最佳资源分配来管理流行病的传播。 所提出的研究将动态系统模型与子组识别和数据驱动的资源分配联系起来。 这将在应用数学、统计学和计算机科学领域创造新的知识和新的研究领域。 该奖项由美国国立卫生研究院大数据知识 (BD2K) 计划与美国国家科学基金会数学科学部合作支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Suchi Saria其他文献
A data-driven framework for identifying patient subgroups on which an AI/machine learning model may underperform
一个用于识别人工智能/机器学习模型可能表现不佳的患者亚组的数据驱动框架
- DOI:
10.1038/s41746-024-01275-6 - 发表时间:
2024-11-21 - 期刊:
- 影响因子:15.100
- 作者:
Adarsh Subbaswamy;Berkman Sahiner;Nicholas Petrick;Vinay Pai;Roy Adams;Matthew C. Diamond;Suchi Saria - 通讯作者:
Suchi Saria
Partial Identifiability in Discrete Data with Measurement Error
具有测量误差的离散数据的部分可辨识性
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Noam Finkelstein;Roy Adams;Suchi Saria;Ilya Shpitser - 通讯作者:
Ilya Shpitser
Biological research and self-driving labs in deep space supported by artificial intelligence
在人工智能支持下的深空生物研究和自动驾驶实验室
- DOI:
10.1038/s42256-023-00618-4 - 发表时间:
2023-03-23 - 期刊:
- 影响因子:23.900
- 作者:
Lauren M. Sanders;Ryan T. Scott;Jason H. Yang;Amina Ann Qutub;Hector Garcia Martin;Daniel C. Berrios;Jaden J. A. Hastings;Jon Rask;Graham Mackintosh;Adrienne L. Hoarfrost;Stuart Chalk;John Kalantari;Kia Khezeli;Erik L. Antonsen;Joel Babdor;Richard Barker;Sergio E. Baranzini;Afshin Beheshti;Guillermo M. Delgado-Aparicio;Benjamin S. Glicksberg;Casey S. Greene;Melissa Haendel;Arif A. Hamid;Philip Heller;Daniel Jamieson;Katelyn J. Jarvis;Svetlana V. Komarova;Matthieu Komorowski;Prachi Kothiyal;Ashish Mahabal;Uri Manor;Christopher E. Mason;Mona Matar;George I. Mias;Jack Miller;Jerry G. Myers;Charlotte Nelson;Jonathan Oribello;Seung-min Park;Patricia Parsons-Wingerter;R. K. Prabhu;Robert J. Reynolds;Amanda Saravia-Butler;Suchi Saria;Aenor Sawyer;Nitin Kumar Singh;Michael Snyder;Frank Soboczenski;Karthik Soman;Corey A. Theriot;David Van Valen;Kasthuri Venkateswaran;Liz Warren;Liz Worthey;Marinka Zitnik;Sylvain V. Costes - 通讯作者:
Sylvain V. Costes
Biomonitoring and precision health in deep space supported by artificial intelligence
人工智能支持下的深空生物监测与精准健康
- DOI:
10.1038/s42256-023-00617-5 - 发表时间:
2023-03-23 - 期刊:
- 影响因子:23.900
- 作者:
Ryan T. Scott;Lauren M. Sanders;Erik L. Antonsen;Jaden J. A. Hastings;Seung-min Park;Graham Mackintosh;Robert J. Reynolds;Adrienne L. Hoarfrost;Aenor Sawyer;Casey S. Greene;Benjamin S. Glicksberg;Corey A. Theriot;Daniel C. Berrios;Jack Miller;Joel Babdor;Richard Barker;Sergio E. Baranzini;Afshin Beheshti;Stuart Chalk;Guillermo M. Delgado-Aparicio;Melissa Haendel;Arif A. Hamid;Philip Heller;Daniel Jamieson;Katelyn J. Jarvis;John Kalantari;Kia Khezeli;Svetlana V. Komarova;Matthieu Komorowski;Prachi Kothiyal;Ashish Mahabal;Uri Manor;Hector Garcia Martin;Christopher E. Mason;Mona Matar;George I. Mias;Jerry G. Myers;Charlotte Nelson;Jonathan Oribello;Patricia Parsons-Wingerter;R. K. Prabhu;Amina Ann Qutub;Jon Rask;Amanda Saravia-Butler;Suchi Saria;Nitin Kumar Singh;Michael Snyder;Frank Soboczenski;Karthik Soman;David Van Valen;Kasthuri Venkateswaran;Liz Warren;Liz Worthey;Jason H. Yang;Marinka Zitnik;Sylvain V. Costes - 通讯作者:
Sylvain V. Costes
Individualized sepsis treatment using reinforcement learning
使用强化学习的个体化脓毒症治疗
- DOI:
10.1038/s41591-018-0253-x - 发表时间:
2018-11-05 - 期刊:
- 影响因子:50.000
- 作者:
Suchi Saria - 通讯作者:
Suchi Saria
Suchi Saria的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Suchi Saria', 18)}}的其他基金
FW-HTF: Human-Machine Teaming for Medical Decision Making
FW-HTF:用于医疗决策的人机协作
- 批准号:
1840088 - 财政年份:2019
- 资助金额:
$ 1.58万 - 项目类别:
Standard Grant
SBIR Phase I: Driving Timely Point-of-Care Treatment in Hospitals with a High Precision Bayesian Machine Learning Platform
SBIR 第一阶段:利用高精度贝叶斯机器学习平台推动医院及时的护理点治疗
- 批准号:
1746602 - 财政年份:2018
- 资助金额:
$ 1.58万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: Modeling Disease Trajectories in Patients with Complex, Multiphenotypic Conditions
SCH:INT:合作研究:对复杂、多表型病症患者的疾病轨迹进行建模
- 批准号:
1418590 - 财政年份:2014
- 资助金额:
$ 1.58万 - 项目类别:
Standard Grant
相似海外基金
QuBBD: Collaborative Research: Quantifying Morphologic Phenotypes in Prostate Cancer - Developing Topological Descriptors for Machine Learning Algorithms
QuBBD:合作研究:量化前列腺癌的形态表型 - 开发机器学习算法的拓扑描述符
- 批准号:
1664858 - 财政年份:2017
- 资助金额:
$ 1.58万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: Quantifying Morphologic Phenotypes in Prostate Cancer - Developing Topological Descriptors for Machine Learning Algorithms
QuBBD:合作研究:量化前列腺癌的形态表型 - 开发机器学习算法的拓扑描述符
- 批准号:
1664848 - 财政年份:2017
- 资助金额:
$ 1.58万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: Interactive Ensemble clustering for mixed data with application to mood disorders
QuBBD:协作研究:混合数据的交互式集成聚类及其在情绪障碍中的应用
- 批准号:
1557593 - 财政年份:2015
- 资助金额:
$ 1.58万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: Interactive Ensemble clustering for mixed data with application to mood disorders
QuBBD:协作研究:混合数据的交互式集成聚类及其在情绪障碍中的应用
- 批准号:
1557642 - 财政年份:2015
- 资助金额:
$ 1.58万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: Towards Automated Quantitative Prostate Cancer Diagnosis
QuBBD:合作研究:实现前列腺癌自动化定量诊断
- 批准号:
1557750 - 财政年份:2015
- 资助金额:
$ 1.58万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: Personalized Predictive Neuromarkers for Stress-Related Health Risks
QuBBD:合作研究:压力相关健康风险的个性化预测神经标志物
- 批准号:
1557572 - 财政年份:2015
- 资助金额:
$ 1.58万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: Advancing mHealth using Big Data Analytics: Statistical and Dynamical Systems Modeling of Real-Time Adaptive m-Intervention for Pain
QuBBD:协作研究:利用大数据分析推进移动医疗:疼痛实时自适应移动干预的统计和动态系统建模
- 批准号:
1557727 - 财政年份:2015
- 资助金额:
$ 1.58万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: SMART -- Spatial-Nonspatial Multidimensional Adaptive Radiotherapy Treatment
QuBBD:合作研究:SMART——空间-非空间多维适应性放射治疗
- 批准号:
1557559 - 财政年份:2015
- 资助金额:
$ 1.58万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: SMART -- Spatial-Nonspatial Multidimensional Adaptive Radiotherapy Treatment
QuBBD:合作研究:SMART——空间-非空间多维适应性放射治疗
- 批准号:
1557679 - 财政年份:2015
- 资助金额:
$ 1.58万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: Advancing mHealth using Big Data Analytics: Statistical and Dynamical Systems Modeling of Real-Time Adaptive m-Intervention for Pain
QuBBD:协作研究:利用大数据分析推进移动医疗:疼痛实时自适应移动干预的统计和动态系统建模
- 批准号:
1557712 - 财政年份:2015
- 资助金额:
$ 1.58万 - 项目类别:
Standard Grant














{{item.name}}会员




