EAGER: Emergent Quantum Confinement-Induced Properties of a New Class of Aromatic Ligand-Passivated Hybrid ITO Nanocrystals

EAGER:新型芳香配体钝化混合 ITO 纳米晶体的量子限域诱导特性

基本信息

  • 批准号:
    1747582
  • 负责人:
  • 金额:
    $ 15.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL SUMMARY Nanocrystals (NCs) have inorganic core dimensions on the order of a billionth of a meter. It is challenging to assemble them into larger superstructures. Along these lines, this award, which is supported by the Solid State and Materials Chemistry program in the Division of Materials Research, addresses the forefront of modern nanoscience and nanotechnology-related research. Using polymers as solvents to synthesize ultrasmall tin-doped indium oxide (ITO) NCs this project targets a material with potential applications in fabrication of improved optoelectronic devices such as photovoltaics, light-emitting diodes, photodetectors, and photocatalytic solar fuel production. The project investigates how surface attachment of appropriately chosen organic molecules produces hybrid-ITO NCs (artificial molecules), and as a consequence alters the optoelectronic and electrochemical properties of the individual ITO NCs and their assemblies. Traditionally these properties are varied by changing the inorganic core size of NCs. Because of the different underlying mechanism to tune properties, the impact of this research is expected to be far-reaching in the context of new materials design, advancing molecular level understanding in nanoscience and materials chemistry, and economic expansion and sustainability. Additionally, this project provides multidisciplinary research training opportunities, including inorganic chemistry, materials science and nanotechnology, for graduate and undergraduate students. Through these activities the principle investigator fosters the next generation STEM educators and innovators. TECHNICAL SUMMARY Ligand-passivated nanocrystals (NCs) are of immense interest to chemists, physicists, and materials scientists, because NC-ligand interfacial electronic interactions and bonding greatly impact their chemical and physical properties. Through this Solid State and Materials Chemistry-funded project the principle investigator synthesizes and characterizes a new class of ultrasmall, quantum confined hybrid-ITO NCs. Functionalizing the NC core with uniquely designed aromatic ligands allows the researchers to manipulate the interaction and electronic coupling of interfacial energetic states between the inorganic (ITO core) and organic surface ligands. This leads to new structure-function relationships, which are fundamentally different from those previously characterized in traditional larger ITO NCs. Specific objectives of this project include: (1) experimentally characterizing the optoelectronic properties of this new class of hybrid-ITO NCs, both to understand the fundamental chemical and structural processes that exist at the NC-ligand interface and to control electronic coupling between individual energetic state of the NC and ligands, (2) correlating experimental spectroscopic data with computational models to predict the effects of the NC size and the electronic and/or chemical structure of surface ligands on optoelectronic properties, and (3) predictably assembling hybrid ITO-NCs into artificial solids and then measuring charge transfer and transport properties in the solid-state with the aim of understanding mechanisms controlling such phenomena. Taken together, results from this project are crucial in ultimately guiding the preparation of novel inorganic-organic hybrid nanomaterials to increase efficiency of solid-state optoelectronic devices and photocatalysts.
纳米晶体(NC)具有十亿分之一米量级的无机核尺寸。将它们组装成更大的上层建筑是具有挑战性的。沿着这些路线,这个奖项,这是由材料研究部的固态和材料化学计划的支持,解决了现代纳米科学和纳米技术相关的研究的前沿。使用聚合物作为溶剂来合成超小的掺锡氧化铟(ITO)NCs,该项目的目标是在制造改进的光电器件(如光致发光器件、发光二极管、光电探测器和光催化太阳能燃料生产)中具有潜在应用的材料。该项目研究了适当选择的有机分子的表面附着如何产生混合ITO NC(人工分子),并因此改变了单个ITO NC及其组件的光电和电化学特性。传统上,通过改变NC的无机核尺寸来改变这些性质。由于不同的基本机制来调整性能,这项研究的影响预计将在新材料设计,推进纳米科学和材料化学的分子水平理解以及经济扩张和可持续性方面产生深远的影响。此外,该项目为研究生和本科生提供多学科研究培训机会,包括无机化学,材料科学和纳米技术。通过这些活动,主要研究者培养下一代STEM教育工作者和创新者。 技术总结配体钝化纳米晶体(NC)引起了化学家、物理学家和材料科学家的极大兴趣,因为NC-配体界面电子相互作用和键合极大地影响了它们的化学和物理性质。通过这个固态和材料化学资助的项目,主要研究人员合成和表征了一类新的超小型量子限制混合ITO NCs。用独特设计的芳香族配体功能化NC核心,使研究人员能够操纵无机(ITO核心)和有机表面配体之间界面能态的相互作用和电子耦合。这导致了新的结构-功能关系,这与以前传统的较大ITO NCs中的结构-功能关系有根本的不同。该项目的具体目标包括:(1)实验性地表征这类新的混合-ITO NC的光电性质,以理解存在于NC-配体界面处的基本化学和结构过程,并控制NC和配体的各个能量状态之间的电子耦合,(2)将实验光谱数据与计算模型相关联,以预测NC尺寸和表面配体的电子和/或化学结构对光电性能的影响,和(3)可预测地将杂化ITO-NC组装成人造固体,然后测量固态中的电荷转移和传输性质,目的是理解控制这种现象的机制。总之,该项目的结果对于最终指导新型无机-有机杂化纳米材料的制备以提高固态光电器件和光催化剂的效率至关重要。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rajesh Sardar其他文献

Rajesh Sardar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rajesh Sardar', 18)}}的其他基金

Structure-Property Relationships of Anion Vacancy Plasmonic Metal Oxide Nanocrystals
阴离子空位等离子体金属氧化物纳米晶的构效关系
  • 批准号:
    2319183
  • 财政年份:
    2023
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
Development of Next Generation Plasmonic Nanosensors for Ultrasensitive, High-Throughput Nucleic Acid and Protein Assays
开发用于超灵敏、高通量核酸和蛋白质测定的下一代等离子体纳米传感器
  • 批准号:
    2204681
  • 财政年份:
    2022
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
UNS:Plasmonic Nanoantenna-Based Multiplexing microRNA Assay at Zeptomolar Concentrations
UNS:Zeptomolar 浓度下基于等离子纳米天线的多重 microRNA 测定
  • 批准号:
    1604617
  • 财政年份:
    2016
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant

相似国自然基金

推广的Hubbard模型中的emergent现象研究
  • 批准号:
    11474061
  • 批准年份:
    2014
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
关于Emergent宇宙的相关研究
  • 批准号:
    11175093
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Emergent quantum phenomena in epitaxial thin films of topological Dirac semimetal and its heterostructures
职业:拓扑狄拉克半金属及其异质结构外延薄膜中的量子现象
  • 批准号:
    2339309
  • 财政年份:
    2024
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Continuing Grant
CAREER: Next-generation Logic, Memory, and Agile Microwave Devices Enabled by Spin Phenomena in Emergent Quantum Materials
职业:由新兴量子材料中的自旋现象实现的下一代逻辑、存储器和敏捷微波器件
  • 批准号:
    2339723
  • 财政年份:
    2024
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Continuing Grant
Understanding quantum emergent phenomena in Shastry-Sutherland model systems
了解 Shastry-Sutherland 模型系统中的量子涌现现象
  • 批准号:
    2327555
  • 财政年份:
    2024
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
Giant modulation of the speed of nonlinear quantum phase transitions in strongly correlated materials via chemical bonding force engineering and its application to emergent neuromorphic devices
通过化学键合力工程对强相关材料中非线性量子相变速度的巨大调制及其在新兴神经形态器件中的应用
  • 批准号:
    23K03919
  • 财政年份:
    2023
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Emergent spacetime based on quantum correlations and measurements
基于量子相关性和测量的涌现时空
  • 批准号:
    23KJ1154
  • 财政年份:
    2023
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Matrix quantum mechanics and emergent spacetime
矩阵量子力学和涌现时空
  • 批准号:
    2895509
  • 财政年份:
    2023
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Studentship
MuSR and multi-probe studies of spin-charge interplays in emergent quantum phenomena
涌现量子现象中自旋电荷相互作用的 MuSR 和多探针研究
  • 批准号:
    2104661
  • 财政年份:
    2023
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Investigating Emergent Gravity in Combinatorial Quantum Systems
LEAPS-MPS:研究组合量子系统中的涌现引力
  • 批准号:
    2138323
  • 财政年份:
    2022
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Continuing Grant
Modelling Emergent Interfacial Phenomena in Topological Quantum Lattices
拓扑量子晶格中涌现界面现象的建模
  • 批准号:
    2745677
  • 财政年份:
    2022
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Studentship
Recent Developments on the Properties of Emergent Layered 2D Quantum Magnetic Materials and Heterostructures
新兴层状二维量子磁性材料和异质结构性能的最新进展
  • 批准号:
    2211763
  • 财政年份:
    2022
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了