Structure-Property Relationships of Anion Vacancy Plasmonic Metal Oxide Nanocrystals
阴离子空位等离子体金属氧化物纳米晶的构效关系
基本信息
- 批准号:2319183
- 负责人:
- 金额:$ 45.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARYScience and technology thrive on the discovery of new materials with unique optoelectronic properties. Nanosized materials commonly referred to as nanoparticles are in the forefront of modern scientific research because of their ever-expanding applications, specifically in energy storage and conversion for a sustainable future. With support from the Solid State and Materials Chemistry program in the Division of Materials Research, Prof. Rajesh Sardar and his group at Indiana University-Purdue University Indianapolis will expand the scientific understanding of metal oxide nanoparticle synthesis via colloidal synthetic methods. Because these nanoparticles contain oxygen coupled in a unique manner with non-toxic metals, the research allows for highly tunable and environmentally friendly nanoparticle compositions. The unique combination of shape anisotropy and surface chemistry of these nanoparticles will be optimized to enhance their optoelectronic properties directed towards highly advanced electronic devices and catalysts. The project aims to train underrepresented minority students through mentored research, and integration of research results into the university level graduate and undergraduate courses. The scientific and communication skills of students at every level will be enhanced through multi-faceted collaboration between scientists from universities and national laboratories, as well as mentoring and workshops. TECHNICAL SUMMARYThe discovery of new functional materials with unique optical and electronic properties will allow rational design of optoelectronic devices with better performance. This project supported by the Solid State and Materials Chemistry program in the NSF’s Division of Materials Research aims to synthesize localized surface plasmon resonance (LSPR)-active metal oxide nanoparticles where LSPR properties are generated from oxygen vacancies (anion deficiencies) in the stoichiometric inorganic lattice that leads to free (conduction band) electron density as high as in plasmonic noble metal (Au and Ag) nanoparticles. These anion deficient metal oxide nanoparticles are expected to produce strong electromagnetic field enhancement and hot electrons that are most desirable for various light-driven applications. This project seeks to understand the structure-property relationships of ligand-passivated nanoparticles. Specifically, the project (1) synthesizes LSPR-active, targeted anisotropic shaped nanoparticles via seed-mediated growth approaches, (2) performs spectroscopic and microscopic analyses, along with theoretical calculations to understand the mechanisms that control the shape and desired composition of such nanoparticles, and (3) utilizes organic passivating ligands to control and achieve substantially enhanced optoelectronic properties with unique abilities. As a part of the broader impact activities, graduate and undergraduate, along with underrepresented high school students will develop research skills through mentorship and workshops. Additionally, research outcomes will be integrated into undergraduate and graduate courses, as well as disseminated at national and international meeting, and peer-reviewed publications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性总结科学和技术的繁荣依赖于具有独特光电特性的新材料的发现。纳米材料通常被称为纳米颗粒,由于其不断扩大的应用,特别是在可持续未来的能量储存和转换方面,处于现代科学研究的最前沿。在材料研究部固态和材料化学项目的支持下,印第安纳州普渡大学印第安纳波利斯分校的Rajesh Sardar教授和他的团队将通过胶体合成方法扩大对金属氧化物纳米颗粒合成的科学理解。由于这些纳米颗粒含有以独特方式与无毒金属偶联的氧,因此该研究允许高度可调和环境友好的纳米颗粒组合物。这些纳米颗粒的形状各向异性和表面化学的独特组合将被优化,以增强其针对高度先进的电子器件和催化剂的光电性能。该项目旨在通过指导研究,并将研究成果纳入大学一级的研究生和本科生课程,培训代表性不足的少数民族学生。将通过大学和国家实验室的科学家之间的多方面合作以及辅导和讲习班,提高各级学生的科学和沟通技能。具有独特光学和电子性质的新功能材料的发现将允许具有更好性能的光电器件的合理设计。该项目由NSF材料研究部门的固态和材料化学计划支持,旨在合成局部表面等离子体共振(LSPR)活性金属氧化物纳米颗粒,其中LSPR特性由化学计量无机晶格中的氧空位(阴离子缺陷)产生,导致自由(导带)电子密度与等离子体贵金属(Au和Ag)纳米颗粒一样高。这些阴离子缺乏的金属氧化物纳米颗粒预期产生强电磁场增强和热电子,这对于各种光驱动应用是最期望的。该项目旨在了解配体钝化纳米颗粒的结构-性质关系。具体而言,该项目(1)通过种子介导的生长方法合成LSPR活性的、靶向各向异性形状的纳米颗粒,(2)进行光谱和显微镜分析,沿着理论计算,以了解控制这种纳米颗粒的形状和所需组成的机制,以及(3)利用有机钝化配体来控制和实现具有独特能力的显著增强的光电特性。作为更广泛的影响活动的一部分,研究生和本科生,连同代表性不足的高中生沿着将通过指导和研讨会发展研究技能。此外,研究成果将被纳入本科生和研究生课程,并在国家和国际会议上传播,以及同行评审的出版物。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rajesh Sardar其他文献
Rajesh Sardar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rajesh Sardar', 18)}}的其他基金
Development of Next Generation Plasmonic Nanosensors for Ultrasensitive, High-Throughput Nucleic Acid and Protein Assays
开发用于超灵敏、高通量核酸和蛋白质测定的下一代等离子体纳米传感器
- 批准号:
2204681 - 财政年份:2022
- 资助金额:
$ 45.57万 - 项目类别:
Standard Grant
EAGER: Emergent Quantum Confinement-Induced Properties of a New Class of Aromatic Ligand-Passivated Hybrid ITO Nanocrystals
EAGER:新型芳香配体钝化混合 ITO 纳米晶体的量子限域诱导特性
- 批准号:
1747582 - 财政年份:2017
- 资助金额:
$ 45.57万 - 项目类别:
Standard Grant
UNS:Plasmonic Nanoantenna-Based Multiplexing microRNA Assay at Zeptomolar Concentrations
UNS:Zeptomolar 浓度下基于等离子纳米天线的多重 microRNA 测定
- 批准号:
1604617 - 财政年份:2016
- 资助金额:
$ 45.57万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Understanding Processing-Structure-Property Relationships in Co-Axial Wire-Feed, Powder-Feed Laser Directed Energy Deposition
职业:了解同轴送丝、送粉激光定向能量沉积中的加工-结构-性能关系
- 批准号:
2338951 - 财政年份:2024
- 资助金额:
$ 45.57万 - 项目类别:
Standard Grant
Structure-Optoelectronic Property Relationships in Homogeneous and Heterogeneous/Gradient Alloyed Colloidal I-(II)-III-VI Quantum Dots
均质和异质/梯度合金胶体 I-(II)-III-VI 量子点的结构-光电性质关系
- 批准号:
2304949 - 财政年份:2023
- 资助金额:
$ 45.57万 - 项目类别:
Standard Grant
CAREER: CAS-Climate: Structure-Property-Performance Relationships of Iron- and Copper-Based Hybrid Mie-Resonator Photocatalysts for C-C and C-N Coupling Reactions
职业:CAS-气候:用于 C-C 和 C-N 偶联反应的铁基和铜基混合米氏谐振器光催化剂的结构-性能-性能关系
- 批准号:
2237454 - 财政年份:2023
- 资助金额:
$ 45.57万 - 项目类别:
Continuing Grant
CAS: RUI: Click Synthesis and Structure-Property-Function Relationships of Amphiphilic Ionic Liquids
CAS:RUI:两亲性离子液体的点击合成及其结构-性能-功能关系
- 批准号:
2244980 - 财政年份:2023
- 资助金额:
$ 45.57万 - 项目类别:
Standard Grant
Investigation of Structure-Property Relationships in Canted Antiferromagnetic Molecular Conductors by Fine Control of Intermolecular Interactions
通过分子间相互作用的精细控制研究倾斜反铁磁分子导体的结构-性能关系
- 批准号:
23K13722 - 财政年份:2023
- 资助金额:
$ 45.57万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Structure-property relationships in ionically substituted bioactive glasses.
离子取代生物活性玻璃的结构-性能关系。
- 批准号:
RGPIN-2019-04634 - 财政年份:2022
- 资助金额:
$ 45.57万 - 项目类别:
Discovery Grants Program - Individual
CAS: Development of Structure-Property Relationships in Photoluminescent Bismuth Organic Materials
CAS:光致发光有机铋材料结构-性能关系的发展
- 批准号:
2203658 - 财政年份:2022
- 资助金额:
$ 45.57万 - 项目类别:
Continuing Grant
Developing surfmer structure-property relationships for high internal phase emulsion foams
开发高内相乳液泡沫的 surfmer 结构-性能关系
- 批准号:
2138945 - 财政年份:2022
- 资助金额:
$ 45.57万 - 项目类别:
Standard Grant
FMRG: Eco: Process-Structure-Property Relationships of 3D Printed Earth Materials and Structures
FMRG:生态:3D 打印地球材料和结构的工艺-结构-性能关系
- 批准号:
2134488 - 财政年份:2022
- 资助金额:
$ 45.57万 - 项目类别:
Standard Grant
Understanding the Structure-Property Relationships in Nanoporous Materials
了解纳米多孔材料的结构-性能关系
- 批准号:
RGPIN-2018-04594 - 财政年份:2022
- 资助金额:
$ 45.57万 - 项目类别:
Discovery Grants Program - Individual