EAGER: Medical Knowledge Graph Construction from Heterogeneous Sources
EAGER:异构来源的医学知识图构建
基本信息
- 批准号:1747614
- 负责人:
- 金额:$ 19.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-11-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this project is to construct comprehensive medical knowledge graphs. Such knowledge graphs can satisfy users' growing needs for reliable medical information, help the effective communication between patients and doctors, and potentially help reduce the high costs of health care. This project tackles a series of unique challenges observed in medical domains, and develops effective approaches that can extract knowledge from the deluge of crowdsourced data to augment medical knowledge graphs. The proposed research advances the fields of knowledge graph construction and information trustworthiness analysis by developing novel methods that mines knowledge from unstructured data in medical domains.This project investigates the problem of medical graph construction from the following perspectives: 1) Effective approaches are developed to take into account the semantic relations between medical terms during the extraction of reliable medical facts from noisy answers on healthcare question and answering websites; 2) A unified framework is designed to integrate information from heterogeneous data sources in the process of medical knowledge discovery; 3) The knowledge graph is completed by inferring new relations based on existing relations between medical terms in the graph. The proposed research is implemented into a system prototype that displays the extracted medical facts and the knowledge graph, which benefit online users who seek medical information. The proposed techniques are used to enhance educational methodologies. Research results of this project are integrated into course materials and projects that reinforce student training.
该项目的目标是构建全面的医学知识图谱。此类知识图谱可以满足用户对可靠医疗信息日益增长的需求,有助于患者和医生之间的有效沟通,并可能有助于降低高昂的医疗保健成本。该项目解决了医学领域中观察到的一系列独特挑战,并开发了有效的方法,可以从海量的众包数据中提取知识以增强医学知识图谱。 该研究通过开发从医学领域非结构化数据中挖掘知识的新方法,推进了知识图谱构建和信息可信度分析领域的发展。该项目从以下角度研究了医学图谱构建问题:1)在从医疗保健问答网站的嘈杂答案中提取可靠的医学事实时,开发了有效的方法来考虑医学术语之间的语义关系; 2)设计统一的框架,整合医学知识发现过程中异构数据源的信息; 3)根据图中医学术语之间的现有关系,推断出新的关系,完成知识图谱。所提出的研究被实施到一个系统原型中,该原型显示提取的医学事实和知识图,这有利于寻求医疗信息的在线用户。所提出的技术用于增强教育方法。该项目的研究成果被纳入课程材料和项目中,以加强学生培训。
项目成果
期刊论文数量(29)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
InterHG: an Interpretable and Accurate Model for Hypothesis Generation
InterHG:可解释且准确的假设生成模型
- DOI:10.1109/bibm52615.2021.9669740
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Wang, Haoyu;Wang, Xuan;Wang, Yaqing;Xun, Guangxu;Jha, Kishlay;Gao, Jing
- 通讯作者:Gao, Jing
Data Poisoning Attack against Recommender System Using Incomplete and Perturbed Data
- DOI:10.1145/3447548.3467233
- 发表时间:2021-08
- 期刊:
- 影响因子:0
- 作者:Hengtong Zhang;Changxin Tian;Yaliang Li;Lu Su;Nan Yang;Wayne Xin Zhao;Jing Gao
- 通讯作者:Hengtong Zhang;Changxin Tian;Yaliang Li;Lu Su;Nan Yang;Wayne Xin Zhao;Jing Gao
Knowledge-Guided Paraphrase Identification
- DOI:10.18653/v1/2021.findings-emnlp.72
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Haoyu Wang;Fenglong Ma;Yaqing Wang;Jing Gao
- 通讯作者:Haoyu Wang;Fenglong Ma;Yaqing Wang;Jing Gao
Learning from Language Description: Low-shot Named Entity Recognition via Decomposed Framework
- DOI:10.18653/v1/2021.findings-emnlp.139
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Yaqing Wang;Haoda Chu;Chao Zhang;Jing Gao
- 通讯作者:Yaqing Wang;Haoda Chu;Chao Zhang;Jing Gao
On the Estimation of Treatment Effect with Text Covariates
- DOI:10.24963/ijcai.2019/570
- 发表时间:2019-08
- 期刊:
- 影响因子:0
- 作者:Liuyi Yao;Sheng Li;Yaliang Li;Hongfei Xue;Jing Gao;Aidong Zhang
- 通讯作者:Liuyi Yao;Sheng Li;Yaliang Li;Hongfei Xue;Jing Gao;Aidong Zhang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Changyou Chen其他文献
Self-Adversarially Learned Bayesian Sampling
自对抗学习贝叶斯采样
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Yang Zhao;Jianyi Zhang;Changyou Chen - 通讯作者:
Changyou Chen
Synergistic mechanism of magneto-optical sensing mediated by magnetic response protein Amb0994 and LOV-like protein Amb2291 in emMagnetospirillum magneticum/em AMB-1
磁响应蛋白 Amb0994 和类光感受蛋白 Amb2291 在 AMB-1 菌株中介导磁光传感的协同机制
- DOI:
10.1016/j.jphotobiol.2025.113124 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:3.700
- 作者:
Haitao Chen;Changyou Chen;Haoyu Zhao;Yuanyuan Wei;Pingping Wang;Long-Fei Wu;Tao Song - 通讯作者:
Tao Song
Isolation of circulating tumor cells based on magnetophoresis
基于磁泳的循环肿瘤细胞分离
- DOI:
10.1016/j.cjac.2022.100058 - 发表时间:
2022 - 期刊:
- 影响因子:1.2
- 作者:
Ke Xu;Xuelei Jiao;Pingping Wang;Changyou Chen;Chuanfang Chen - 通讯作者:
Chuanfang Chen
Non-Parametric Kernel Learning with robust pairwise constraints
具有稳健的成对约束的非参数核学习
- DOI:
10.1007/s13042-011-0048-6 - 发表时间:
2011-09 - 期刊:
- 影响因子:5.6
- 作者:
Changyou Chen;Junping Zhang;Xuefang He;Zhi-Hua Zhou - 通讯作者:
Zhi-Hua Zhou
Magnetically targeted photothemal cancer therapy in vivo with bacterial magnetic nanoparticles
利用细菌磁性纳米颗粒进行体内磁靶向光热癌症治疗
- DOI:
10.1016/j.colsurfb.2018.08.051 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Fangxu Wang;Chuanfang Chen;Yuling Chen;Pingping Wang;Changyou Chen;Duyan Geng;Linlin Li;Tao Song - 通讯作者:
Tao Song
Changyou Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Changyou Chen', 18)}}的其他基金
RI:Small:Exploring Efficient Bayesian Model-Augmentation Techniques for Decomposible Contrastive Representation Learning
RI:Small:探索可分解对比表示学习的高效贝叶斯模型增强技术
- 批准号:
2223292 - 财政年份:2022
- 资助金额:
$ 19.96万 - 项目类别:
Standard Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
相似海外基金
Enhancing Factuality in Medical QA: Integrating Structured Knowledge Bases with Large Language Models
增强医学质量保证的真实性:将结构化知识库与大型语言模型相集成
- 批准号:
24K20832 - 财政年份:2024
- 资助金额:
$ 19.96万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Research on clinical knowledge extraction infrastructure using real-world data derived from electronic medical records
使用电子病历中的真实数据提取临床知识基础设施的研究
- 批准号:
23K17001 - 财政年份:2023
- 资助金额:
$ 19.96万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Developing a policy tool to promote residents' malaria control: an experimental intervention based on Medical Science and Economics knowledge
开发促进居民疟疾控制的政策工具:基于医学和经济学知识的实验干预
- 批准号:
23KK0024 - 财政年份:2023
- 资助金额:
$ 19.96万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Advance Requests for Medical Assistance in Dying (MAiD):A Knowledge Synthesis and Qualitative Health Policy Analysis
临终医疗援助预先请求 (MAiD):知识综合和定性卫生政策分析
- 批准号:
486605 - 财政年份:2022
- 资助金额:
$ 19.96万 - 项目类别:
Studentship Programs
DDRIG: An Historical Study of the Circulation and Growth of Medical Knowledge
DDRIG:医学知识流通和增长的历史研究
- 批准号:
2147139 - 财政年份:2022
- 资助金额:
$ 19.96万 - 项目类别:
Standard Grant
Medical Assistance in Dying in Canada: A Multidisciplinary Pan-Canadian Knowledge Translation Initiative to Improve Practice Guidelines and Plan A Research Agenda
加拿大临终医疗援助:旨在改进实践指南和规划研究议程的多学科泛加拿大知识转化计划
- 批准号:
460701 - 财政年份:2022
- 资助金额:
$ 19.96万 - 项目类别:
Miscellaneous Programs
Exchanges of medical knowledge in Canada between Native communities and church missionaries in the nineteenth century.
十九世纪加拿大原住民社区和教会传教士之间的医学知识交流。
- 批准号:
2751121 - 财政年份:2022
- 资助金额:
$ 19.96万 - 项目类别:
Studentship
An AI medical knowledge platform that allows clinicians to rapidly find best practice answers
一个让临床医生快速找到最佳实践答案的AI医学知识平台
- 批准号:
10023176 - 财政年份:2022
- 资助金额:
$ 19.96万 - 项目类别:
Collaborative R&D
Northern Networks: Astronomical and Medical Knowledge from the Baltic to East Central Europe, 1550-1750
北方网络:从波罗的海到中欧东部的天文和医学知识,1550-1750 年
- 批准号:
AH/W002175/1 - 财政年份:2022
- 资助金额:
$ 19.96万 - 项目类别:
Research Grant
Empowering providers with software using medical knowledge and data to improve patient care.
为提供商提供使用医学知识和数据的软件来改善患者护理。
- 批准号:
566883-2021 - 财政年份:2021
- 资助金额:
$ 19.96万 - 项目类别:
Applied Research and Development Grants - Level 1