Conference: No Boundaries: Groups in Algebra, Geometry, and Topology
会议:无边界:代数、几何和拓扑中的群
基本信息
- 批准号:1748107
- 负责人:
- 金额:$ 3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The conference titled "No Boundaries: Groups in Algebra, Geometry, and Topology" will be held October 27-29, 2017 at the University of Chicago. No Boundaries: Groups in Algebra, Geometry, and Topology is a conference that highlights the significant impact of the field of geometric group theory on several related mathematical fields. The conference also aims to promote further fundamental discoveries in geometric group theory and the related fields. This conference will expose attendees to the highest caliber of mathematics, presented by some of the field's best expositors. Through the recorded videos, mathematicians at a wide variety of institutions will gain valuable exposure to these ideas. The organizers expect that the conference will serve as inspiration for a new generation of researchers to develop both depth and breadth in their work.The aims of the conference are to highlight current mathematical advances at the various interfaces of geometric group theory, low-dimensional topology, representation theory, dynamics, number theory, and algebraic geometry; examples include the development of the theory of representation stability and the resolution of many long-standing conjectures in the theory of 3-manifold topology and the theory of mapping class group groups. There will be plenary lectures by top experts in a variety of related fields. The conference will have several sessions of lightning talks, affording junior researchers a high-profile stage in which to present their results, and ample time to discuss their work with experts during breaks. The conference will also feature a problem session, the output of which will shape the direction of research in these areas for years to come. Ore information can be fund at the conference websitehttp://people.math.gatech.edu/~dmargalit7/noboundaries/index.shtml
题为“无边界:代数、几何和拓扑中的群”的会议将于 2017 年 10 月 27 日至 29 日在芝加哥大学举行。无边界:代数、几何和拓扑中的群是一个强调几何群论领域对几个相关数学领域的重大影响的会议。 会议还旨在促进几何群论及相关领域的进一步基础发现。 这次会议将使与会者接触到由该领域一些最优秀的阐释者呈现的最高水平的数学知识。通过录制的视频,各个机构的数学家将获得宝贵的接触这些想法的机会。组织者期望这次会议能够激励新一代研究人员发展其工作的深度和广度。会议的目的是突出当前在几何群论、低维拓扑、表示论、动力学、数论和代数几何等各个领域的数学进展;例子包括表示稳定性理论的发展以及3流形拓扑理论和映射类群群理论中许多长期存在的猜想的解决。 届时将有多个相关领域的顶尖专家进行大会演讲。会议将举行多场闪电演讲,为初级研究人员提供一个高调的舞台来展示他们的成果,并在休息期间有充足的时间与专家讨论他们的工作。会议还将举办一个问题会议,会议的成果将决定未来几年这些领域的研究方向。矿石信息可在会议网站资助http://people.math.gatech.edu/~dmargalit7/noboundaries/index.shtml
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dan Margalit其他文献
Erratum to The level four braid group (J. reine angew. Math. 735 (2018), 249–264)
四级辫子组勘误表(J. reine angew. Math. 735 (2018), 249–264)
- DOI:
10.1515/crelle-2023-0093 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Tara E. Brendle;Dan Margalit - 通讯作者:
Dan Margalit
Generators for the hyperelliptic Torelli group and the kernel of the Burau representation at $$t=-1$$
- DOI:
10.1007/s00222-014-0537-9 - 发表时间:
2014-07-29 - 期刊:
- 影响因子:3.600
- 作者:
Tara Brendle;Dan Margalit;Andrew Putman - 通讯作者:
Andrew Putman
Thurston's theorem and the Nielsen-Thurston classification via Teichm\"uller's theorem
瑟斯顿定理和基于 Teichm"uller 定理的 Nielsen-Thurston 分类
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
James Belk;Dan Margalit;Rebecca R. Winarski - 通讯作者:
Rebecca R. Winarski
Dan Margalit的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dan Margalit', 18)}}的其他基金
Conference: Topology Students Workshop 2024
会议:拓扑学学生研讨会 2024
- 批准号:
2350113 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Group Theoretical, Combinatorial, and Dynamical Aspects of Mapping Class Groups
映射类组的群理论、组合和动力学方面
- 批准号:
1510556 - 财政年份:2015
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
相似海外基金
ARDSに対する体外式二酸化炭素除去・超肺保護換気下のNO吸入による新規治療の開発
开发一种在超保护性通气下使用体外二氧化碳去除和一氧化氮吸入治疗 ARDS 的新方法
- 批准号:
24K19442 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
敗血症性心筋症の新規治療戦略となるβ3アドレナリン受容体を介したNO産生経路の解明
阐明β3-肾上腺素能受体介导的NO产生途径作为脓毒症心肌病的新治疗策略
- 批准号:
24K12149 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Say Yes to NO: The Next Generation Scaffolds with Localized and Sustained Nitric Oxide (NO) Delivery for Central Nervous System Regeneration
对“否”说“是”:具有局部和持续一氧化氮 (NO) 输送的下一代支架,用于中枢神经系统再生
- 批准号:
EP/X027198/2 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Fellowship
内皮/上皮病態連関とROS/NO不均衡を基軸とした腎臓病の病態理解と治療法開発
了解肾脏疾病的病理学并根据内皮/上皮病理学关系和 ROS/NO 失衡开发治疗方法
- 批准号:
24K02468 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
膵臓がん治療の奏功を目指したアルブミン高親和能を有する新規NO供与体の創製
创建具有高白蛋白亲和力的新型 NO 供体,成功治疗胰腺癌
- 批准号:
24K09975 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ChapARone: No-code Augmented Reality CMS with location-based WebAR/AR for Stations
ChapARone:无代码增强现实 CMS,具有基于位置的 WebAR/AR 站点
- 批准号:
10089927 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Collaborative R&D
Understanding tephra transport and deposition processes and its impact on marine ecology associated with August 2021 eruption of the Fukutoku-Oka-no-Ba volcano
了解与 2021 年 8 月 Fukutoku-Oka-no-Ba 火山喷发相关的火山灰输送和沉积过程及其对海洋生态的影响
- 批准号:
23H01278 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
No Mere Sideshows: The Lasting Impact of the African Theatres of the First World War
不仅仅是杂耍:第一次世界大战非洲战区的持久影响
- 批准号:
23K00792 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




