Braids, Surfaces, and Polynomials
辫子、曲面和多项式
基本信息
- 批准号:2417920
- 负责人:
- 金额:$ 39.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-11-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Polynomials arise in mathematics and science whenever we model a physical, biological, or chemical system. Surfaces often appear when we study the geometry of a system; for instance, the set of configurations of a mechanical system or the underlying template for a large dimensional data set. Braids occur whenever we have a collection of points moving in a surface, for instance stars and planets moving within our field of vision, or the roots of polynomials changing with respect to a parameter. In order to understand these phenomena, it is essential to study the set of symmetries of a surface, which is also known as the mapping class group of the surface. This is a beautiful and rich theory that has been the focus of intense study over the past century. The goal of this research is to study surfaces, braids, and polynomials, and the interactions of these objects with each other. One project is to give fast algorithms for deciding basic properties of elements of the mapping class group. One of the properties that the algorithm computes is the entropy, which determines the amount of mixing happening on the surface. In addition to these research goals, the PI plans to continue work on several projects that have direct impact on graduate, undergraduate, and high school students. The first is the highly successful Topology Students Workshop, a conference that serves both as a research conference in topology for graduate students as well as a professional development workshop. The second is a free, online, interactive textbook for basic linear algebra, called Interactive Linear Algebra. The PI also plans to expand outreach activities to local K-12 classrooms.The PI will study Thurston maps, braid groups, and mapping class groups. A Thurston map is a branched cover of the complex plane (or Riemann sphere) over itself, with finite post-critical set. Many polynomials are Thurston maps. A basic recognition problem in complex dynamics is: given a Thurston map, is it equivalent to a polynomial, and if so, which one? In prior work, the PI and his collaborators gave a new, geometric algorithm to solve this recognition problem. The PI plans to investigate new, structural descriptions of the universe of such recognition problems. Specifically, the project will establish a version of the Bestvina-Handel algorithm from the theory of mapping class groups that is adapted to the setting of Thurston maps. The project will also provide a version of the Birman exact sequence (again from the theory of mapping class groups). One project in the theory of mapping class groups is to give a quadratic time algorithm that takes as input a product of generators of the mapping class group and determines the Nielsen-Thurston type of that product. This algorithm also produces finer information about the product of generators, such as reducing curves and entropy. A third project is to classify homomorphisms between braid groups. The main new tool is the theory of totally symmetric sets, developed by the PI and his collaborators. By classifying these homomorphisms we gain insight into the relationships between polynomials of different degrees.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多项式出现在数学和科学中,每当我们建模物理,生物或化学系统时。当我们研究系统的几何形状时,曲面经常出现;例如,机械系统的配置集或大尺寸数据集的基础模板。每当我们有一个点的集合在一个表面上移动,例如恒星和行星在我们的视野内移动,或者多项式的根相对于一个参数变化时,辫子就会出现。为了理解这些现象,研究曲面的对称性集合是必不可少的,它也被称为曲面的映射类群。这是一个美丽而丰富的理论,在过去的世纪里一直是激烈研究的焦点。本研究的目标是研究表面,辫子和多项式,以及这些对象之间的相互作用。一个项目是给出快速算法来确定映射类组的元素的基本属性。该算法计算的属性之一是熵,它决定了表面上发生的混合量。除了这些研究目标,PI计划继续开展对研究生,本科生和高中生有直接影响的几个项目。第一个是非常成功的拓扑学生研讨会,会议既作为研究生的拓扑研究会议,也作为专业发展研讨会。第二个是一个免费的,在线的,互动的基本线性代数教科书,称为互动线性代数。PI还计划将外展活动扩展到当地的K-12教室。PI将研究瑟斯顿地图,辫子组和绘图班级组。Thurston映射是复平面(或黎曼球面)在自身上的分支覆盖,具有有限的后临界集。许多多项式是瑟斯顿映射。复动力学中的一个基本识别问题是:给定一个瑟斯顿映射,它是否等价于一个多项式,如果是,是哪一个?在之前的工作中,PI和他的合作者给出了一个新的几何算法来解决这个识别问题。PI计划研究这种识别问题的新的结构描述。具体来说,该项目将建立一个版本的Bestvina-Handel算法从映射类组的理论,适应于瑟斯顿地图的设置。该项目还将提供一个版本的伯曼精确序列(再次从映射类群的理论)。映射类群理论中的一个项目是给出一个二次时间算法,该算法将映射类群的生成元的乘积作为输入,并确定该乘积的Nielsen-Thurston型。该算法还产生关于生成器的乘积的更精细的信息,例如减少曲线和熵。第三个项目是分类辫子群之间的同态。主要的新工具是完全对称集理论,由PI和他的合作者开发。通过对这些同态进行分类,我们可以深入了解不同次数的多项式之间的关系。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dan Margalit其他文献
Erratum to The level four braid group (J. reine angew. Math. 735 (2018), 249–264)
四级辫子组勘误表(J. reine angew. Math. 735 (2018), 249–264)
- DOI:
10.1515/crelle-2023-0093 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Tara E. Brendle;Dan Margalit - 通讯作者:
Dan Margalit
Generators for the hyperelliptic Torelli group and the kernel of the Burau representation at $$t=-1$$
- DOI:
10.1007/s00222-014-0537-9 - 发表时间:
2014-07-29 - 期刊:
- 影响因子:3.600
- 作者:
Tara Brendle;Dan Margalit;Andrew Putman - 通讯作者:
Andrew Putman
Thurston's theorem and the Nielsen-Thurston classification via Teichm\"uller's theorem
瑟斯顿定理和基于 Teichm"uller 定理的 Nielsen-Thurston 分类
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
James Belk;Dan Margalit;Rebecca R. Winarski - 通讯作者:
Rebecca R. Winarski
Dan Margalit的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dan Margalit', 18)}}的其他基金
Conference: Topology Students Workshop 2024
会议:拓扑学学生研讨会 2024
- 批准号:
2350113 - 财政年份:2024
- 资助金额:
$ 39.6万 - 项目类别:
Standard Grant
Conference: No Boundaries: Groups in Algebra, Geometry, and Topology
会议:无边界:代数、几何和拓扑中的群
- 批准号:
1748107 - 财政年份:2017
- 资助金额:
$ 39.6万 - 项目类别:
Standard Grant
Group Theoretical, Combinatorial, and Dynamical Aspects of Mapping Class Groups
映射类组的群理论、组合和动力学方面
- 批准号:
1510556 - 财政年份:2015
- 资助金额:
$ 39.6万 - 项目类别:
Standard Grant
相似海外基金
Understanding Material Interactions and Effects on Polymicrobial Communities at Surfaces
了解材料相互作用和对表面多种微生物群落的影响
- 批准号:
BB/Y512412/1 - 财政年份:2024
- 资助金额:
$ 39.6万 - 项目类别:
Training Grant
Collaborative Research: Sloshing liquid decontamination of compliant surfaces
合作研究:顺应表面的晃动液体净化
- 批准号:
2346686 - 财政年份:2024
- 资助金额:
$ 39.6万 - 项目类别:
Standard Grant
Collaborative Research: Sloshing liquid decontamination of compliant surfaces
合作研究:顺应表面的晃动液体净化
- 批准号:
2346687 - 财政年份:2024
- 资助金额:
$ 39.6万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Trisections Workshops: Connections with Knotted Surfaces and Diffeomorphisms
协作研究:会议:三等分研讨会:与结曲面和微分同胚的联系
- 批准号:
2350344 - 财政年份:2024
- 资助金额:
$ 39.6万 - 项目类别:
Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
- 批准号:
2401507 - 财政年份:2024
- 资助金额:
$ 39.6万 - 项目类别:
Standard Grant
Laser Engineered Surfaces/Interfaces for Advanced Batteries
用于先进电池的激光工程表面/界面
- 批准号:
EP/Y036727/1 - 财政年份:2024
- 资助金额:
$ 39.6万 - 项目类别:
Research Grant
Brauer groups and Neron Severi groups of surfaces over finite fields
有限域上的表面布劳尔群和 Neron Severi 群
- 批准号:
23K25768 - 财政年份:2024
- 资助金额:
$ 39.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Symmetric representation and the categorification of cluster structure on non-orientable surfaces
不可定向表面簇结构的对称表示和分类
- 批准号:
24K06666 - 财政年份:2024
- 资助金额:
$ 39.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Reconfigurable Intelligent Surfaces 2.0 for 6G: Beyond Diagonal Phase Shift Matrices
适用于 6G 的可重构智能表面 2.0:超越对角相移矩阵
- 批准号:
EP/Y004086/1 - 财政年份:2024
- 资助金额:
$ 39.6万 - 项目类别:
Research Grant
Atomic-Scale Engineering of Bioactive Organic Molecules on Surfaces
表面生物活性有机分子的原子尺度工程
- 批准号:
DP240100464 - 财政年份:2024
- 资助金额:
$ 39.6万 - 项目类别:
Discovery Projects