EAGER: Tracing Privacy-Policy Statements into Code for Privacy-Aware Mobile App Development
EAGER:将隐私政策声明跟踪到隐私意识移动应用程序开发的代码中
基本信息
- 批准号:1748109
- 负责人:
- 金额:$ 12.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Privacy for smartphone and mobile applications users present unprecedented threats. In the United States, privacy policies serve as the primary means to inform users about how mobile apps process privacy data. The application developers are responsible for implementing privacy policies so that the code corresponds to the policies. Currently, there are no techniques for tracing high-level privacy practices into code. New research is needed to develop automatic privacy-aware development tools, as well as tools to determine if the code implements the policies correctly. To automatically trace high-level privacy practices in privacy policies into application code, the project borrows the idea of context-based classification from information extraction in natural language processing (NLP). In particular, both the natural-language-based policies and the program code are subjected to statistical NLP techniques to determine relationships between the policies and their implementations. The assumption that NLP techniques can be applied to code is based on recent work that has established the "naturalness" of software, in the sense that statistical NLP techniques appear to work just as well for computer programs as they do for, say, English. The project will mine a large set of privacy policies and corresponding code to find out how, or to what extent, policies manifest themselves in code. To the extent that consistency between privacy policies and code can be determined, new approaches to privacy policy understanding and enforcement might be possible.
智能手机和移动的应用程序用户的隐私面临着前所未有的威胁。在美国,隐私政策是告知用户移动的应用程序如何处理隐私数据的主要手段。应用程序开发人员负责实现隐私策略,以便代码与策略相对应。目前,还没有将高级隐私实践跟踪到代码中的技术。 需要新的研究来开发自动隐私感知开发工具,以及确定代码是否正确实现策略的工具。为了将隐私策略中的高级隐私实践自动跟踪到应用程序代码中,该项目借鉴了自然语言处理(NLP)中信息提取的基于上下文的分类思想。 特别地,基于自然语言的策略和程序代码都受到统计NLP技术的影响,以确定策略及其实现之间的关系。 NLP技术可以应用于代码的假设是基于最近的工作,这些工作已经确定了软件的“自然性”,从这个意义上说,统计NLP技术似乎对计算机程序和对英语一样有效。该项目将挖掘大量的隐私策略和相应的代码,以了解策略如何或在多大程度上体现在代码中。在某种程度上,隐私政策和代码之间的一致性可以确定,隐私政策的理解和执行的新方法可能是可能的。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Privacy Assurance for Android Augmented Reality Apps
Android 增强现实应用程序的隐私保证
- DOI:10.1109/prdc47002.2019.00037
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Zhang, Xueling;Slavin, Rocky;Wang, Xiaoyin;Niu, Jianwei
- 通讯作者:Niu, Jianwei
Toward Detection of Access Control Models from Source Code via Word Embedding
- DOI:10.1145/3322431.3326329
- 发表时间:2019-05
- 期刊:
- 影响因子:0
- 作者:John Heaps;Xiaoyin Wang;T. Breaux;Jianwei Niu
- 通讯作者:John Heaps;Xiaoyin Wang;T. Breaux;Jianwei Niu
IconIntent: Automatic Identification of Sensitive UI Widgets Based on Icon Classification for Android Apps
- DOI:10.1109/icse.2019.00041
- 发表时间:2019-05
- 期刊:
- 影响因子:0
- 作者:Xusheng Xiao;Xiaoyin Wang;Zhihao Cao;Hanlin Wang;Peng Gao
- 通讯作者:Xusheng Xiao;Xiaoyin Wang;Zhihao Cao;Hanlin Wang;Peng Gao
TestMig: migrating GUI test cases from iOS to Android
- DOI:10.1145/3293882.3330575
- 发表时间:2019-07
- 期刊:
- 影响因子:0
- 作者:Xue Qin;Hao Zhong;Xiaoyin Wang
- 通讯作者:Xue Qin;Hao Zhong;Xiaoyin Wang
Toward a reliability measurement framework automated using deep learning
使用深度学习实现自动化的可靠性测量框架
- DOI:10.1145/3314058.3317733
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Heaps, John;Zhang, Xueling;Wang, Xiaoyin;Breaux, Travis;Niu, Jianwei
- 通讯作者:Niu, Jianwei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaoyin Wang其他文献
DOVAR: Data-on-Object Visualization with Virtual and Augmented Reality in Scientific Education
DOVAR:科学教育中虚拟现实和增强现实的对象数据可视化
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Xiaoyin Wang;M. Rivera;Lisette Isais;Corbin Styles - 通讯作者:
Corbin Styles
A Study on Behavioral Backward Incompatibility Bugs in Java Software Libraries
Java软件库中行为向后不兼容缺陷的研究
- DOI:
10.1109/icse-c.2017.101 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Shaikh Mostafa;Rodney Rodriguez;Xiaoyin Wang - 通讯作者:
Xiaoyin Wang
An adaptive filtering mechanism for energy efficient data prefetching
一种用于节能数据预取的自适应过滤机制
- DOI:
10.1109/aspdac.2013.6509617 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Xianglei Dang;Xiaoyin Wang;Dong Tong;Zichao Xie;Lingda Li;Keyi Wang - 通讯作者:
Keyi Wang
The regulatory effect of CoL10A1 to the intracranial vascular invasion and cell proliferation in breast cancer via EMT pathway
胶原蛋白 X 型α1 链(CoL10A1)通过上皮间质转化(EMT)途径对乳腺癌颅内血管侵袭和细胞增殖的调控作用
- DOI:
10.1038/s41598-025-87475-w - 发表时间:
2025-04-01 - 期刊:
- 影响因子:3.900
- 作者:
Xiaoyin Wang;Shunchang Ma;Shaomin Li;Wang Jia;Dainan Zhang - 通讯作者:
Dainan Zhang
Cost comparison of four revascularisation procedures for the treatment of multivessel coronary artery disease
治疗多支冠状动脉疾病的四种血运重建手术的成本比较
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:2.4
- 作者:
Xiaoyin Wang;M. Rokoss;Adel M. Dyub;A. Gafni;A. Lamy - 通讯作者:
A. Lamy
Xiaoyin Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaoyin Wang', 18)}}的其他基金
Collaborative Research: SHF: Small: Reuse and Migration of GUI Tests
协作研究:SHF:小型:GUI 测试的重用和迁移
- 批准号:
2007718 - 财政年份:2020
- 资助金额:
$ 12.83万 - 项目类别:
Standard Grant
CCRI: Planning: Collaborative Research: A Platform for Conducting Software Engineering User Studies
CCRI:规划:协同研究:进行软件工程用户研究的平台
- 批准号:
2016604 - 财政年份:2020
- 资助金额:
$ 12.83万 - 项目类别:
Standard Grant
CAREER: Analysis and Repair of Build Scripts for DevOps Software Practice
职业:DevOps 软件实践的构建脚本分析和修复
- 批准号:
1846467 - 财政年份:2019
- 资助金额:
$ 12.83万 - 项目类别:
Continuing Grant
CRII: SHF: Automatic Building of Software Projects to Support Analysis of Open Software Repositories
CRII:SHF:自动构建软件项目以支持开放软件存储库分析
- 批准号:
1464425 - 财政年份:2015
- 资助金额:
$ 12.83万 - 项目类别:
Standard Grant
相似国自然基金
基于可配置处理器的Ray-Tracing算法专用硬件体系结构的研究
- 批准号:61070136
- 批准年份:2010
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
Detection and Automatic Privacy-Protected Contact Tracing System Designed for COVID-19
专为 COVID-19 设计的检测和自动隐私保护接触者追踪系统
- 批准号:
10321003 - 财政年份:2020
- 资助金额:
$ 12.83万 - 项目类别:
RAPID: Collaborative: REACT: Real-time Contact Tracing and Risk Monitoring via Privacy-enhanced Mobile Tracking
RAPID:协作:REACT:通过隐私增强型移动跟踪进行实时接触者追踪和风险监控
- 批准号:
2027790 - 财政年份:2020
- 资助金额:
$ 12.83万 - 项目类别:
Standard Grant
RAPID: Collaborative: A privacy-preserving contact tracing system for COVID-19 containment and mitigation
RAPID:协作:用于遏制和缓解 COVID-19 的隐私保护接触者追踪系统
- 批准号:
2028190 - 财政年份:2020
- 资助金额:
$ 12.83万 - 项目类别:
Standard Grant
RAPID: An Organizational Scale Approach to Privacy-Enabled Contact Tracing in COVID-19
RAPID:在 COVID-19 中启用隐私的组织规模接触者追踪方法
- 批准号:
2032525 - 财政年份:2020
- 资助金额:
$ 12.83万 - 项目类别:
Standard Grant
RAPID: Collaborative: A privacy-preserving contact tracing system for COVID-19 containment and mitigation
RAPID:协作:用于遏制和缓解 COVID-19 的隐私保护接触者追踪系统
- 批准号:
2028174 - 财政年份:2020
- 资助金额:
$ 12.83万 - 项目类别:
Standard Grant
RAPID: Collaborative: REACT: Real-time Contact Tracing and Risk Monitoring via Privacy-enhanced Mobile Tracking
RAPID:协作:REACT:通过隐私增强型移动跟踪进行实时接触者追踪和风险监控
- 批准号:
2027794 - 财政年份:2020
- 资助金额:
$ 12.83万 - 项目类别:
Standard Grant
A Secure and Privacy-Preserving Contact Tracing System for the Covid-19 Pandemic
针对 Covid-19 大流行的安全且保护隐私的接触者追踪系统
- 批准号:
552993-2020 - 财政年份:2020
- 资助金额:
$ 12.83万 - 项目类别:
Alliance Grants
Detection and Automatic Privacy-Protected Contact Tracing System Designed for COVID-19
专为 COVID-19 设计的检测和自动隐私保护接触者追踪系统
- 批准号:
10264617 - 财政年份:2020
- 资助金额:
$ 12.83万 - 项目类别:
COVID-19 contact-tracing: Secretarium proposal to maximise impact while keeping privacy at heart
COVID-19 接触者追踪:秘书处提案,旨在最大限度地发挥影响力,同时牢记隐私
- 批准号:
72834 - 财政年份:2020
- 资助金额:
$ 12.83万 - 项目类别:
Collaborative R&D
COVID-19 - An intelligent system for contact tracing, monitoring, and privacy preserving data analytics during the COVID-19 pandemic
COVID-19 - 用于在 COVID-19 大流行期间进行接触者追踪、监控和隐私保护数据分析的智能系统
- 批准号:
551077-2020 - 财政年份:2020
- 资助金额:
$ 12.83万 - 项目类别:
Alliance Grants