EAGER: COLLABORATIVE RESEARCH: Reversible Solid Electrolyte Interface (SEI) Layers for Advanced Li-ion Batteries and Beyond

EAGER:协作研究:用于高级锂离子电池及其他电池的可逆固体电解质界面 (SEI) 层

基本信息

项目摘要

Although lithium ion batteries have been commercialized for consumer electronics, they still fall far behind the requirements needed for batteries used in long-range electric vehicles and large-scale renewable energy storage. There is a need to improve the energy densities of lithium ion batteries and to research "beyond lithium ion" battery technologies that employ high-capacity but low-cost materials such as silicon, oxygen or sulfur electrodes. Almost all battery chemistries in electrochemical energy storage cells operate beyond the stability limits of the electrolytes, substance that produce an electrically conducting solution when dissolved. These battery cells operate in many cases because electrode material-electrolyte reactions result in the formation of a protective material layer on the electrode material, called a solid-electrolyte interface layer. The mechanical and chemical reactivity properties of this protective layer dictate the energy, power and the long-term cycling stability of the battery system; however, fundamental knowledge on the formation of this protective layer is lacking. This research project is investigating a new solid-electrolyte interface layer formation mechanism that will enable design solutions for many of the performance limitations of batteries. The research outcomes of this project are being integrated into energy-themed educational activities for students to study science, technology, engineering and mathematics (STEM) subjects. This collaborative research project between research groups at the University and Arkansas and the University of Michigan seeks a fundamentally new solid-electrolyte interface formation mechanism by using silicon/electrolyte interfaces as a model system. Intensive electrochemical characterizations are being conducted by testing silicon film electrodes in various concentrated electrolytes to understand the coordination environments of lithium cations in the bulk electrolytes and its implications on the solid-electrolyte interface layer compositions. In situ atomic force microscopy is being employed to probe the formation and evolution of solid-electrolyte interface layers on silicon surfaces in a cell. Theoretical simulations are being combined with material characterizations to advance the fundamental understanding of solid-electrolyte interface layers derived from concentrated electrolytes. The research project is designed to test a new theory to control the interfacial properties between electrodes and electrolyte, one that is broadly applicable to battery technologies and many other energy storage and conversion systems.
尽管锂离子电池已经商业化用于消费电子产品,但它们仍然远远落后于用于远程电动汽车和大规模可再生能源存储的电池所需的要求。需要提高锂离子电池的能量密度,并研究采用高容量但低成本材料(例如硅、氧或硫电极)的“超越锂离子”电池技术。电化学能量存储电池中的几乎所有电池化学物质都在电解质的稳定性极限之外运行,电解质是在溶解时产生导电溶液的物质。这些电池单元在许多情况下工作,因为电极材料-电解质反应导致在电极材料上形成保护材料层,称为固体-电解质界面层。该保护层的机械和化学反应特性决定了电池系统的能量、功率和长期循环稳定性;然而,缺乏关于该保护层形成的基础知识。该研究项目正在研究一种新的固体电解质界面层形成机制,该机制将为电池的许多性能限制提供设计解决方案。该项目的研究成果正被纳入以能源为主题的教育活动,供学生学习科学、技术、工程和数学科目。该大学和阿肯色州以及密歇根大学的研究小组之间的合作研究项目通过使用硅/电解质界面作为模型系统来寻求一种全新的固体电解质界面形成机制。通过在各种浓缩电解质中测试硅膜电极来进行密集的电化学表征,以了解本体电解质中锂阳离子的配位环境及其对固体电解质界面层组合物的影响。原位原子力显微镜被用来探测电池中硅表面上固体电解质界面层的形成和演变。理论模拟与材料表征相结合,以推进对来自浓缩电解质的固体电解质界面层的基本理解。该研究项目旨在测试一种控制电极和电解质之间界面特性的新理论,该理论广泛适用于电池技术和许多其他能量存储和转换系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fei Gao其他文献

Pipeline-Based Parallel Framework for Mass File Processing
基于管道的海量文件处理并行框架
Structure Design and Positive Kinematics Analysis of Medical Pneumatic Soft Robot
医用气动软体机器人结构设计与正运动学分析
Method of product function module partition
Ab initio study of interstitial helium clusters in 3C-SiC(厦大第一单位)
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Shangquan Zhao;Guang Ran;Fangbiao Li;Huiqiu Deng;Fei Gao
  • 通讯作者:
    Fei Gao
Effect of H on the formation of vacancy dislocation loops in α-Fe
H对α-Fe中空位位错环形成的影响
  • DOI:
    10.1016/j.jnucmat.2020.152500
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Xin-Dong Pan;Tao Lu;Yi-Ming Lyu;Yu-Ping Xu;Hai-Shan Zhou;Zhong-Shi Yang;Guo-Jian Niu;Xiao-Chun Li;Fei Gao;Guang-Nan Luo
  • 通讯作者:
    Guang-Nan Luo

Fei Gao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fei Gao', 18)}}的其他基金

Cultivating Learners' Autonomy to Improve Math Skills for STEM Learning
培养学习者的自主性,提高 STEM 学习的数学技能
  • 批准号:
    2142608
  • 财政年份:
    2022
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
CAP: Building a Cyberlearning Research Program: An Early Career Symposium; November 3 and 4, 2015; Indianapolis, Indiana
CAP:建立网络学习研究计划:早期职业研讨会;
  • 批准号:
    1541669
  • 财政年份:
    2015
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了