EAGER: COLLABORATIVE RESEARCH: Reversible Solid Electrolyte Interface (SEI) Layers for Advanced Li-ion Batteries and Beyond

EAGER:协作研究:用于高级锂离子电池及其他电池的可逆固体电解质界面 (SEI) 层

基本信息

项目摘要

Although lithium ion batteries have been commercialized for consumer electronics, they still fall far behind the requirements needed for batteries used in long-range electric vehicles and large-scale renewable energy storage. There is a need to improve the energy densities of lithium ion batteries and to research "beyond lithium ion" battery technologies that employ high-capacity but low-cost materials such as silicon, oxygen or sulfur electrodes. Almost all battery chemistries in electrochemical energy storage cells operate beyond the stability limits of the electrolytes, substance that produce an electrically conducting solution when dissolved. These battery cells operate in many cases because electrode material-electrolyte reactions result in the formation of a protective material layer on the electrode material, called a solid-electrolyte interface layer. The mechanical and chemical reactivity properties of this protective layer dictate the energy, power and the long-term cycling stability of the battery system; however, fundamental knowledge on the formation of this protective layer is lacking. This research project is investigating a new solid-electrolyte interface layer formation mechanism that will enable design solutions for many of the performance limitations of batteries. The research outcomes of this project are being integrated into energy-themed educational activities for students to study science, technology, engineering and mathematics (STEM) subjects. This collaborative research project between research groups at the University and Arkansas and the University of Michigan seeks a fundamentally new solid-electrolyte interface formation mechanism by using silicon/electrolyte interfaces as a model system. Intensive electrochemical characterizations are being conducted by testing silicon film electrodes in various concentrated electrolytes to understand the coordination environments of lithium cations in the bulk electrolytes and its implications on the solid-electrolyte interface layer compositions. In situ atomic force microscopy is being employed to probe the formation and evolution of solid-electrolyte interface layers on silicon surfaces in a cell. Theoretical simulations are being combined with material characterizations to advance the fundamental understanding of solid-electrolyte interface layers derived from concentrated electrolytes. The research project is designed to test a new theory to control the interfacial properties between electrodes and electrolyte, one that is broadly applicable to battery technologies and many other energy storage and conversion systems.
尽管锂离子电池已用于消费电子产品,但它们仍然远远落后于远程电动汽车和大规模可再生能源存储所需的电池所需的要求。有必要改善锂离子电池的能量密度,并研究采用高容量但低成本材料(例如硅,氧气或硫电极)的“超越锂离子”电池技术。电化学储能电池中的几乎所有电池化学都超出了电解质的稳定性极限,这些物质在溶解后会产生电动导电溶液。这些电池电池在许多情况下起作用,因为电极材料 - 电解质反应会导致在电极材料上形成保护材料层,称为固相电解质界面层。该保护层的机械和化学反应性能决定了电池系统的能量,功率和长期循环稳定性;但是,缺乏有关该保护层的形成的基本知识。该研究项目正在研究一种新的固体电解质界面层形成机制,该机制将为电池的许多性能限制提供设计解决方案。该项目的研究成果正在融入以能源为主题的教育活动中,以研究科学,技术,工程和数学(STEM)主题。该大学研究小组与阿肯色州和密歇根大学之间的合作研究项目通过使用硅/电解质接口作为模型系统,寻求一种新的固体电解界面界面形成机制。通过测试各种浓缩电解质中的硅膜电极来了解密集的电化学特征,以了解块状电解质中锂阳离子的配位环境及其对固体电解质界面层层组成的影响。正在使用原位原子力显微镜来探测细胞中硅表面上固体电解质界面层的形成和演化。理论模拟与材料表征结合在一起,以提高对浓缩电解质衍生的固体电解质界面层的基本理解。该研究项目旨在测试一种新理论,以控制电极和电解质之间的界面特性,该理论广泛适用于电池技术以及许多其他能源存储和转换系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fei Gao其他文献

An Enhanced Single-Phase Step-Up Five-Level Inverter
3D Reconstruction and Calculation Methodology of Defect Using Ultrasonic Phased Arrays
利用超声相控阵进行缺陷的 3D 重建和计算方法
A Novel Attention Fully Convolutional Network Method for Synthetic Aperture Radar Image Segmentation
一种用于合成孔径雷达图像分割的新型注意力全卷积网络方法
Effects of Macromolecular Crowding on Structure of DNA
大分子拥挤对DNA结构的影响
  • DOI:
    10.26717/bjstr.2018.07.001545
  • 发表时间:
    2018-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qizhou Chen;Fei Gao;Yazhuo Shang;Honglai Liu
  • 通讯作者:
    Honglai Liu
Event-triggered cooperative learning from output feedback control for multi-agent systems
多智能体系统输出反馈控制的事件触发协作学习
  • DOI:
    10.1016/j.neucom.2018.09.058
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Fei Gao;Weisheng Chen;Zhiwu Li;Jing Li
  • 通讯作者:
    Jing Li

Fei Gao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fei Gao', 18)}}的其他基金

Cultivating Learners' Autonomy to Improve Math Skills for STEM Learning
培养学习者的自主性,提高 STEM 学习的数学技能
  • 批准号:
    2142608
  • 财政年份:
    2022
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
CAP: Building a Cyberlearning Research Program: An Early Career Symposium; November 3 and 4, 2015; Indianapolis, Indiana
CAP:建立网络学习研究计划:早期职业研讨会;
  • 批准号:
    1541669
  • 财政年份:
    2015
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
在线医疗团队协作模式与绩效提升策略研究
  • 批准号:
    72371111
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
  • 批准号:
    62373044
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
  • 批准号:
    82372548
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
  • 批准号:
    32302064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了