EAGER: Selective Biodamage with Shaped THz Light Fields

EAGER:利用成形太赫兹光场进行选择性生物损伤

基本信息

  • 批准号:
    1748906
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-01-15 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

To date, scientists have developed only a very small number of modalities to treat human disease: pharmaceutics, irradiation (photon and particle radiation, focused ultrasound), and surgery. Advances in each of these continues, as do efforts aimed at reducing side effects. Aside from efficacy, specificity of disease treatment is an important goal of medicine, for it offers a promise of personalized therapy and disease cure. The present project, although itself not directly connected to treating disease, informs a potential new treatment modality that has intrinsic specificity and potentially minimal side effects. The intellectual merit of the project lies in a new paradigm that focuses on synthesizing new concepts for molecule specific interaction with nonionizing electromagnetic radiation. The project combines scientific and technical expertise from multiple disciplines, including theoretical and experimental physics, biochemistry, nanotechnology and optical spectroscopy. Five graduate students from three academic departments at two institutions will be engaged in forefront integrated science research with a common goal of obtaining proof-of-principle of the core concept which, if successful, will lead to substantial follow-on research and ultimately form the basis of the development of a new era of disease treatment.This project will explore a new physics-based technique that could contribute to the treatment of various human diseases, including infectious and noninfectious disease, Alzheimer's, etc., and eventually even to treatment of cancer and aging. The technique employs nonionizing, "structured" electromagnetic radiation for ultrafast, massively-parallel and highly selective dissociation of target biostructures, such as large organic molecules and various forms of nucleic acids (viral DNA or RNA genomes as well as bacterial genomes) and proteins (mutant or prion, etc.), in vivo. The structured radiation will be highly tailored in the time and frequency domains, in the mid-infrared (IR) and far infrared / THz ranges and, to retain selectivity, will be carefully tuned into the moderately-nonlinear intensity domain. Modulation techniques will be used to overcome the field penetration problem. This project represents the first step toward this goal. It is clearly "high risk-high payoff", and necessarily interdisciplinary.
到目前为止,科学家们只开发了很少的几种治疗人类疾病的方法:药剂学,辐射(光子和粒子辐射,聚焦超声)和手术。这些方面的进展仍在继续,旨在减少副作用的努力也在继续。除了疗效,疾病治疗的特异性是医学的一个重要目标,因为它提供了个性化治疗和疾病治愈的希望。本项目虽然本身与治疗疾病没有直接联系,但提供了一种潜在的新治疗方式,具有内在的特异性和潜在的最小副作用。该项目的智力价值在于一个新的范式,重点是合成新的概念,分子与非电离电磁辐射的特定相互作用。该项目结合了多个学科的科学和技术专长,包括理论和实验物理学、生物化学、纳米技术和光谱学。来自两个机构三个学术部门的五名研究生将从事前沿综合科学研究,共同目标是获得核心概念的原理证明,如果成功,将导致大量的后续研究,并最终形成疾病治疗新时代发展的基础。该项目将探索一种新的物理学-基于技术,可以有助于治疗各种人类疾病,包括感染性和非感染性疾病,阿尔茨海默氏症等,最终甚至用于治疗癌症和衰老。该技术采用非电离的、“结构化的”电磁辐射,用于目标生物结构的超快、平行和高选择性解离,所述目标生物结构例如大有机分子和各种形式的核酸(病毒DNA或RNA基因组以及细菌基因组)和蛋白质(突变体或朊病毒等),in vivo.结构化辐射将在时域和频域中、在中红外(IR)和远红外/ THz范围内进行高度定制,并且为了保持选择性,将被仔细调谐到适度非线性强度域中。调制技术将用于克服场穿透问题。该项目是实现这一目标的第一步。这显然是“高风险高回报”,而且必然是跨学科的。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Towards spectrally selective catastrophic response
  • DOI:
    10.1103/physreve.101.062415
  • 发表时间:
    2020-06-18
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Gabriele, V. R.;Shvonski, A.;Kempa, K.
  • 通讯作者:
    Kempa, K.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Krzysztof Kempa其他文献

Solvent-induced textured structure and improved crystallinity for high performance perovskite solar cells
高性能钙钛矿太阳能电池的溶剂诱导织构结构和改进的结晶度
  • DOI:
    10.1364/ome.7.002150
  • 发表时间:
    2017-07
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Wenhui Zhang;Yue Jiang;Yang Ding;Mingzhi Zheng;Sujuan Wu;Xubing Lu;Xinseng Gao;Qianming Wang;Guofu Zhou;Junming Liu;Michael j. Naughton;Krzysztof Kempa;Jinwei Gao
  • 通讯作者:
    Jinwei Gao
Plasmonic refraction‐induced ultrahigh transparency of highly conducting metallic networks
等离激元折射导致高导电金属网络的超高透明度
  • DOI:
    10.1002/lpor.201500271
  • 发表时间:
    2016-05
  • 期刊:
  • 影响因子:
    11
  • 作者:
    Ruopeng Li;Qiang Peng;Bing Han;Yuanyu Ke;Xin Wang;Xubing Lu;Xueyuan Wu;Jiantao Kong;Zhifeng Ren;Eser Metin Akinoglu;Michael Giersig;Guofu Zhou;Jun-Ming Liu;Krzysztof Kempa;Jinwei Gao
  • 通讯作者:
    Jinwei Gao
Physics of transparent conductors
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
  • 作者:
    Jinwei Gao;Krzysztof Kempa;Michael Giersig;Eser Metin Akinoglu;Bing Han;Ruopeng Li
  • 通讯作者:
    Ruopeng Li
Percolation effects in the checkerboard Babinet series of metamaterial structures
Colossal Figure of Merit in Transparent‐Conducting Metallic Ribbon Networks
透明导电金属带状网络的巨大品质因数
  • DOI:
    10.1002/admt.201600095
  • 发表时间:
    2016-09
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Qiang Peng;Songru Li;Bing Han;Qikun Rong;Xubing Lu;Qianming Wang;Min Zeng;Guofu Zhou;Jun-Ming Liu;Krzysztof Kempa;Jinwei Gao
  • 通讯作者:
    Jinwei Gao

Krzysztof Kempa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Discovering Modular Catalysts for Selective Synthesis with Computation
通过计算发现用于选择性合成的模块化催化剂
  • 批准号:
    2400056
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Two Complementary Approaches to Site-Selective HAT and ET Reactions
位点选择性 HAT 和 ET 反应的两种互补方法
  • 批准号:
    2350270
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Super selective hydrogen permeation through mixed proton and electron conducting asymmetric graphene based membrane
通过混合质子和电子传导不对称石墨烯基膜的超选择性氢渗透
  • 批准号:
    24K17588
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
New biocatalysts for selective chemical oxidations under extreme conditions
用于极端条件下选择性化学氧化的新型生物催化剂
  • 批准号:
    DP240101500
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Projects
Evaluating novel mutant-selective PDE4D PROTACs for the treatment of Acrodysostosis Type 2
评估新型突变选择性 PDE4D PROTAC 治疗 2 型肢节性骨质疏松症
  • 批准号:
    MR/Y003640/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
ASL法を用いた門脈灌流画像の臨床応用及びsuper-selective MRAの有用性評価
ASL法门静脉灌注成像的临床应用及超选择性MRA的有效性评价
  • 批准号:
    24K18753
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERI: Robust and Scalable Manufacturing of Ultra-Sensitive and Selective Molecule Sensor Arrays
ERI:稳健且可扩展的超灵敏和选择性分子传感器阵列制造
  • 批准号:
    2301668
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SBIR Phase II: Addressing Freshwater Salinization and Freshwater Scarcity with a Chloride Selective Removal and Recovery System
SBIR 第二阶段:通过氯化物选择性去除和回收系统解决淡水盐化和淡水短缺问题
  • 批准号:
    2321964
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了