CAREER: Correct-By-Design Control of Traffic Flow Networks

职业:交通流网络的正确设计控制

基本信息

  • 批准号:
    1749357
  • 负责人:
  • 金额:
    $ 50.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-02-15 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Modern cities accommodate more people than ever before, leading to transportation networks that operate at or near capacity. In addition, the next generation of transportation systems will include connected vehicles, connected infrastructure, and increased automation, and these advances must coexist with legacy technology into the foreseeable future. Accommodating these rapidly developing advancements requires smarter and more efficient use of existing infrastructure with guarantees of performance, safety, and interoperability. The goal of this project is to develop fundamental theory and domain-driven techniques for controlling traffic flow in large-scale transportation networks. Recent advances in inexpensive sensors, wireless technology, and the Internet of Things (IoT) enable real-time connectivity of vehicles and infrastructure that offers abundant data and unprecedented opportunities for efficient and optimized transportation systems. The main technical goal is to develop techniques and algorithms that are correct-by-design, ensuring that these transportation systems satisfy required operating specifications. In pursuit of this goal, the project will first develop models of traffic flow from rich data streams and then will leverage these models to enable scalable control approaches. In addition, this project will integrate an ambitious education plan that includes a redesigned introductory course in control theory for undergraduates. The course will be restructured to focus on modern challenges in control, culminating in a Control Grand Challenge design competition in which students will design a controller for an autonomous, scale-model car and then compete with their design. To achieve systems that satisfy the rich design specifications demanded of traffic networks, the project will especially focus on bringing powerful techniques from formal methods for verification and synthesis to large-scale physical networks. These formal methods were originally developed for specifying and verifying the correct behavior of software and hardware systems, and an important research objective now is to ensure these approaches are scalable, adaptable, and reliable when applied to physical control systems. The project will focus on the following objectives: i) Develop theory and models for the dynamic behavior of traffic networks that captures domain-specific phenomena such as congestion propagation, ii) Determine how traffic flow dynamics will change as vehicles are increasingly equipped with autonomous capabilities, iii) Identify and exploit intrinsic structure in traffic flow networks to enable scalable formal methods for verification and synthesis, and iv) Use data available through industry collaborations to develop probabilistically correct control of traffic flow networks. These objectives address a growing need for systematic guarantees of performance in traffic networks as the increasing complexity and interdependence of transportation systems renders ad hoc approaches insufficient. The research activities of this project will use real traffic data available through ongoing collaborations with industry. An expected outcome of this project is a suite of scalable algorithms that will be tested on a pilot traffic network available through this collaboration. In addition, the project will establish foundational theory applicable outside the traffic domain.
现代城市容纳的人口比以往任何时候都多,导致交通网络达到或接近满负荷运行。此外,下一代交通系统将包括联网车辆、联网基础设施和更高的自动化程度,在可预见的未来,这些进步必须与传统技术共存。要实现这些快速发展的进步,需要更智能、更高效地使用现有基础设施,并保证性能、安全性和互操作性。 该项目的目标是开发用于控制大规模交通网络中的交通流的基础理论和领域驱动技术。廉价传感器、无线技术和物联网(IoT)的最新进展实现了车辆和基础设施的实时连接,从而提供了丰富的数据和前所未有的机会, 优化运输系统。 主要的技术目标是开发设计正确的技术和算法,确保这些运输系统满足所需的操作规范。为了实现这一目标,该项目将首先从丰富的数据流中开发交通流模型,然后利用这些模型实现可扩展的控制方法。此外,该项目将整合一个雄心勃勃的教育计划,其中包括重新设计的本科生控制理论入门课程。该课程将进行重组,重点关注控制方面的现代挑战,最终将举办控制大挑战设计竞赛,学生将为自动驾驶的比例模型汽车设计控制器,然后与他们的设计进行竞争。为了实现满足交通网络丰富设计规范要求的系统,该项目将特别关注将验证和综合的形式化方法的强大技术引入大规模物理网络。这些形式化方法最初是为了指定和验证软件和硬件系统的正确行为而开发的,现在的一个重要研究目标是确保这些方法在应用于物理控制系统时具有可扩展性,适应性和可靠性。该项目将侧重于以下目标:i)开发交通网络动态行为的理论和模型,捕获特定领域的现象,如拥堵传播,ii)确定交通流动态将如何随着车辆越来越多地配备自主能力而变化,iii)识别和利用交通流网络中的内在结构,以实现可扩展的形式化方法进行验证和合成,以及iv)使用通过行业协作可获得的数据来开发交通流网络的概率正确控制。由于运输系统日益复杂和相互依存,采取临时办法是不够的,因此,这些目标针对的是日益增长的对系统保证交通网络性能的需要。该项目的研究活动将使用通过与工业界的持续合作获得的真实的交通数据。该项目的预期成果是一套可扩展的算法,将通过这种合作在试点交通网络上进行测试。此外,该项目将建立适用于交通领域以外的基础理论。

项目成果

期刊论文数量(35)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Interval Signal Temporal Logic From Natural Inclusion Functions
自然包含函数的区间信号时态逻辑
  • DOI:
    10.1109/lcsys.2023.3337744
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Baird, Luke;Harapanahalli, Akash;Coogan, Samuel
  • 通讯作者:
    Coogan, Samuel
Continuous Reachability Task Transition Using Control Barrier Functions
使用控制屏障函数的连续可达性任务转换
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Srinivasan, Mohit;Santoyo, Cesar;Coogan, Samuel
  • 通讯作者:
    Coogan, Samuel
Control of Mobile Robots Using Barrier Functions Under Temporal Logic Specifications
  • DOI:
    10.1109/tro.2020.3031254
  • 发表时间:
    2021-04-01
  • 期刊:
  • 影响因子:
    7.8
  • 作者:
    Srinivasan, Mohit;Coogan, Samuel
  • 通讯作者:
    Coogan, Samuel
Efficient Learning of Hyperrectangular Invariant Sets Using Gaussian Processes
使用高斯过程有效学习超矩形不变集
  • DOI:
    10.1109/ojcsys.2022.3206083
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cao, Michael Enqi;Bloch, Matthieu;Coogan, Samuel
  • 通讯作者:
    Coogan, Samuel
Mixed Monotonicity for Reachability and Safety in Dynamical Systems
动态系统中可达性和安全性的混合单调性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samuel Coogan其他文献

Run Time Assurance for Spacecraft Attitude Control Under Nondeterministic Assumptions
非确定性假设下航天器姿态控制的运行时间保证
  • DOI:
    10.1109/tcst.2023.3340624
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Matthew Abate;Mark L. Mote;Mehregan Dor;Corbin Klett;Sean Phillips;Kendra A. Lang;P. Tsiotras;Eric Feron;Samuel Coogan
  • 通讯作者:
    Samuel Coogan
The Mandalay Derivative for Nonsmooth Systems: Applications to Nonsmooth Control Barrier Functions
非光滑系统的曼德勒导数:在非光滑控制障碍函数中的应用
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Carmen Jimenez Cortes;Grant Clark;Samuel Coogan;M. Thitsa
  • 通讯作者:
    M. Thitsa
Area Coverage Using Multiple Aerial Robots With Coverage Redundancy and Collision Avoidance
使用多个空中机器人进行区域覆盖,具有覆盖冗余和防撞功能
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Soobum Kim;Ruoyu Lin;Samuel Coogan;Magnus Egerstedt
  • 通讯作者:
    Magnus Egerstedt
Efficient Reachable Sets on Lie Groups Using Lie Algebra Monotonicity and Tangent Intervals
利用李代数单调性和切线区间的李群上的高效可达集
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akash Harapanahalli;Samuel Coogan
  • 通讯作者:
    Samuel Coogan
Experimental Validation on Aerial Vehicles of Real-Time Motion Planning with Continuous-Time Q-Learning
利用连续时间 Q 学习对飞行器进行实时运动规划的实验验证
  • DOI:
    10.1016/j.ifacol.2023.11.006
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christian Llanes;Josh Netter;K. Vamvoudakis;Samuel Coogan
  • 通讯作者:
    Samuel Coogan

Samuel Coogan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samuel Coogan', 18)}}的其他基金

CPS: Medium: Collaborative Research: Certifiable reinforcement learning for cyber-physical systems
CPS:媒介:协作研究:网络物理系统的可认证强化学习
  • 批准号:
    1836932
  • 财政年份:
    2018
  • 资助金额:
    $ 50.01万
  • 项目类别:
    Standard Grant

相似海外基金

Cyber-Physical Networks: Foundations, Correct-by-Construction Control Design, and Applications
信息物理网络:基础、构造修正控制设计和应用
  • 批准号:
    RGPIN-2016-04139
  • 财政年份:
    2021
  • 资助金额:
    $ 50.01万
  • 项目类别:
    Discovery Grants Program - Individual
CodeCPS: Correct-by-Design Estimation and Control of Cyber-Physical Systems
CodeCPS:网络物理系统的设计正确估计和控制
  • 批准号:
    EP/V043676/1
  • 财政年份:
    2021
  • 资助金额:
    $ 50.01万
  • 项目类别:
    Research Grant
Cyber-Physical Networks: Foundations, Correct-by-Construction Control Design, and Applications
信息物理网络:基础、构造修正控制设计和应用
  • 批准号:
    RGPIN-2016-04139
  • 财政年份:
    2020
  • 资助金额:
    $ 50.01万
  • 项目类别:
    Discovery Grants Program - Individual
Design and verification of correct, efficient and secure concurrent systems
正确、高效、安全的并发系统的设计和验证
  • 批准号:
    DP190102142
  • 财政年份:
    2019
  • 资助金额:
    $ 50.01万
  • 项目类别:
    Discovery Projects
Cyber-Physical Networks: Foundations, Correct-by-Construction Control Design, and Applications
信息物理网络:基础、构造修正控制设计和应用
  • 批准号:
    RGPIN-2016-04139
  • 财政年份:
    2019
  • 资助金额:
    $ 50.01万
  • 项目类别:
    Discovery Grants Program - Individual
Cyber-Physical Networks: Foundations, Correct-by-Construction Control Design, and Applications
信息物理网络:基础、构造修正控制设计和应用
  • 批准号:
    RGPIN-2016-04139
  • 财政年份:
    2018
  • 资助金额:
    $ 50.01万
  • 项目类别:
    Discovery Grants Program - Individual
Design of Anatomically Correct Teeth for an Orthodontic Simulator
正畸模拟器的解剖学上正确的牙齿设计
  • 批准号:
    527868-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 50.01万
  • 项目类别:
    University Undergraduate Student Research Awards
SCC-IRG Track 2: Data-Informed Modeling and Correct-by-Design Control Protocols for Personal Mobility in Intelligent Urban Transportation Systems
SCC-IRG 第 2 轨:智能城市交通系统中个人移动的数据知情建模和设计校正控制协议
  • 批准号:
    1736582
  • 财政年份:
    2017
  • 资助金额:
    $ 50.01万
  • 项目类别:
    Standard Grant
CPS: Frontier: Collaborative Research: Correct-by-Design Control Software Synthesis for Highly Dynamic Systems
CPS:前沿:协作研究:高动态系统的设计正确控制软件综合
  • 批准号:
    1724457
  • 财政年份:
    2017
  • 资助金额:
    $ 50.01万
  • 项目类别:
    Continuing Grant
Cyber-Physical Networks: Foundations, Correct-by-Construction Control Design, and Applications
信息物理网络:基础、构造修正控制设计和应用
  • 批准号:
    RGPIN-2016-04139
  • 财政年份:
    2017
  • 资助金额:
    $ 50.01万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了