CAREER: Theoretical foundations of neural networks - representation, optimization, and generalization
职业:神经网络的理论基础——表示、优化和泛化
基本信息
- 批准号:1750051
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-03-15 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Neural networks form the backbone of machine learning's recent advances and sudden ubiquity. Despite this extensive empirical progress, however, a satisfactory understanding of their behavior is still missing. As neural networks enter more and more into human-facing services (self-driving cars, medical diagnostics, etc.), this status quo and in particular its safety ramifications becomes worrisome. This project aims for a theoretical understanding of the foundations of neural networks, divided into three pieces: (a) the representation question regarding which phenomena can be succinctly approximated by neural networks; (b) the optimization question of how to efficiently fit neural networks to data; and (c) the generalization question on why neural networks can fit not only the data they have seen but also the data they have not seen. Developing this understanding will form the core of this project's three broader impacts: (1) the research component will aim to improve safety and reliability of user-facing deployments of neural networks; (2) as an educational component, the research will be simplified and incorporated into freely available course notes; (3) the award supports two outreach efforts co-founded by the PI: UIUC-ML, a university-wide ML seminar; and the midwest ML symposium, a yearly midwest ML gathering.In more detail, the technical focus of this project, divided into the three learning theoretic topics above, is as follows. The core representation question is: what makes neural network representation special? In more detail, the proposed representation questions are firstly to characterize the power gained by adding a single layer to a network, and secondly to characterize the representation properties of recurrent neural networks, namely neural networks which evolve their state along with a time series they consume. Next comes the topic of optimization, where the key mystery is how neural networks manage to perfectly fit their data with simple iterative descent schemes, despite the apparent nonconvexity of the problem. The plan here is to establish an even stronger property: these iterative schemes manage to output networks which not only fit their data, but do so confidently, in the classical sense of margin theory. Finally, the proposal closes with the topic of generalization. The first goal is to develop refined generalization bounds to the point that they can be algorithmically enforced via effective regularization schemes, and secondarily to apply these techniques to the fitting of neural networks to probability distributions, specifically the problem of training Generative Adversarial Networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
神经网络是机器学习最近取得的进步和突然普及的支柱。 然而,尽管取得了广泛的经验性进展,对它们的行为仍然缺乏令人满意的理解。 随着神经网络越来越多地进入面向人类的服务(自动驾驶汽车、医疗诊断等),这一现状,特别是其安全后果令人担忧。 本课题的目的是从理论上理解神经网络的基础,分为三个部分:(a)关于哪些现象可以用神经网络简洁地近似的表示问题;(B)如何有效地使神经网络与数据相适应的优化问题;以及(c)关于为什么神经网络不仅可以拟合它们已经看到的数据,还可以拟合它们还没有看到的数据的泛化问题。 发展这种理解将构成该项目三个更广泛影响的核心:(1)研究部分旨在提高面向用户的神经网络部署的安全性和可靠性;(2)作为教育部分,研究将被简化并纳入免费课程笔记;(3)该奖项支持PI共同创立的两项外展工作:IUC-ML,全校范围的ML研讨会;以及中西部ML研讨会,一年一度的中西部ML聚会。更详细地说,该项目的技术重点分为上述三个学习理论主题,如下所示。核心的表示问题是:是什么让神经网络表示特别? 更详细地说,所提出的表示问题首先是表征通过向网络添加单层而获得的功率,其次是表征循环神经网络的表示属性,即沿着它们消耗的时间序列发展其状态的神经网络。 接下来是优化的主题,其中关键的奥秘是神经网络如何设法用简单的迭代下降方案完美地拟合其数据,尽管问题明显是非凸的。 这里的计划是建立一个更强的属性:这些迭代方案设法输出网络,这些网络不仅适合它们的数据,而且在经典意义上的边际理论中自信地这样做。 最后,该提案以推广的主题结束。 第一个目标是开发精细的泛化边界,使其可以通过有效的正则化方案在算法上强制执行,其次是将这些技术应用于神经网络对概率分布的拟合,该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Actor-critic is implicitly biased towards high entropy optimal policies
- DOI:
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:Yuzheng Hu;Ziwei Ji;Matus Telgarsky
- 通讯作者:Yuzheng Hu;Ziwei Ji;Matus Telgarsky
Early-stopped neural networks are consistent
- DOI:
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Ziwei Ji;Justin D. Li;Matus Telgarsky
- 通讯作者:Ziwei Ji;Justin D. Li;Matus Telgarsky
Fast Margin Maximization via Dual Acceleration
- DOI:
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Ziwei Ji;N. Srebro;Matus Telgarsky
- 通讯作者:Ziwei Ji;N. Srebro;Matus Telgarsky
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matus Telgarsky其他文献
Generalization bounds via distillation
通过蒸馏的泛化界限
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Daniel Hsu;Ziwei Ji;Matus Telgarsky;Lan Wang - 通讯作者:
Lan Wang
Representation Benefits of Deep Feedforward Networks
- DOI:
- 发表时间:
2015-09 - 期刊:
- 影响因子:0
- 作者:
Matus Telgarsky - 通讯作者:
Matus Telgarsky
Dirichlet draws are sparse with high probability
狄利克雷抽签稀疏且概率较高
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Matus Telgarsky - 通讯作者:
Matus Telgarsky
Neural Networks and Rational Functions
- DOI:
- 发表时间:
2017-06 - 期刊:
- 影响因子:0
- 作者:
Matus Telgarsky - 通讯作者:
Matus Telgarsky
Matus Telgarsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
匹配名贵中药光受体的荧光材料基础理论和应用研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
高容错双边永磁型双定子磁场调制电机新型拓扑与基础理论研究
- 批准号:QN25E070014
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
高频静电驱动的软体气泵基础理论及关键技术研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
半间歇反应本质安全智能设计的关键技术理论基础研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于剖面运动机器人的海洋温差能俘获利用的基础理论与技术研究
- 批准号:Z25E090007
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于“肝病宜疏通大肠”理论探讨不同寄主桦褐孔菌改善非酒精性脂肪肝炎的物质基础差异性及药效作用机制
- 批准号:JCZRLH202500291
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
超纯矿物材料制备基础理论与关键技术研究
- 批准号:2025JJ20051
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于分数阶理论的气磁混合电主轴建模
与控制基础研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于“治未病”思想探讨黄芪建中汤治疗慢性疲劳综合征的理论基础与机制研究
- 批准号:JCZRLH202500115
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
枯竭油气藏储氢关键基础理论研究
- 批准号:JCZRJQ202500118
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: Theoretical foundations for deep learning and large-scale AI models
职业:深度学习和大规模人工智能模型的理论基础
- 批准号:
2339904 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Theoretical Foundations for Learning Network Dynamics
职业:学习网络动力学的理论基础
- 批准号:
2338855 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Strengthening the Theoretical Foundations of Federated Learning: Utilizing Underlying Data Statistics in Mitigating Heterogeneity and Client Faults
职业:加强联邦学习的理论基础:利用底层数据统计来减轻异构性和客户端故障
- 批准号:
2340482 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Computer-Intensive Statistical Inference on High-Dimensional and Massive Data: From Theoretical Foundations to Practical Computations
职业:高维海量数据的计算机密集统计推断:从理论基础到实际计算
- 批准号:
2347760 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Theoretical Foundations of Modern Machine Learning Paradigms: Generative and Out-of-Distribution
职业:现代机器学习范式的理论基础:生成式和非分布式
- 批准号:
2238523 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Theoretical Foundations of Offline Reinforcement Learning
职业:离线强化学习的理论基础
- 批准号:
2141781 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Towards theoretical foundations of neural network based representation learning
职业:迈向基于神经网络的表示学习的理论基础
- 批准号:
2145703 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Theoretical Foundations for Probabilistic Models with Dense Random Matrices
职业:密集随机矩阵概率模型的理论基础
- 批准号:
1750362 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Computer-Intensive Statistical Inference on High-Dimensional and Massive Data: From Theoretical Foundations to Practical Computations
职业:高维海量数据的计算机密集统计推断:从理论基础到实际计算
- 批准号:
1752614 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Technical & Theoretical Foundations for Photoacoustic-Guided Surgery
职业:技术
- 批准号:
1751522 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant