CAREER: New Algorithms for Submodular Optimization
职业:子模优化的新算法
基本信息
- 批准号:1750333
- 负责人:
- 金额:$ 50.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Submodular optimization provides general solutions to a wide range of applications from monitoring water distribution networks to summarizing large corpora of documents and speech recognition. Most of the existing submodular optimization algorithms are not suitable for modern datasets, since they are designed for worst-case instances and they suffer from prohibitive running times and poor empirical performance. This project aims to develop scalable algorithmic approaches with improved empirical performance for submodular optimization and to transfer theoretical insights to applications. The proposed research brings together insights from computer science, mathematics and optimization, and strengthens connections among these fields. The project will involve training the next wave of students and equipping them with technical tools to work in all these fields.The project focuses on three inter-related research directions in submodular function optimization: (a) Design faster algorithms for minimizing submodular functions with a decomposable or sum structure. The approach is to build on a rich set of tools from both discrete and continuous optimization. (b) Design algorithms for constrained submodular maximization problems with improved approximation guarantees and faster running times. The focus is on settling the approximability of constrained submodular maximization problems with a non-monotone objective and on designing faster algorithms for central families of constraints. (c) Design algorithms and frameworks for allocation or labeling problems with submodular costs. The main goal is to obtain more expressive algorithmic frameworks and efficient algorithms.
子模块优化为从监测配水网络到总结大型文档语料库和语音识别的广泛应用提供了通用解决方案。大多数现有的子模块优化算法不适合现代数据集,因为它们是为最坏情况的实例而设计的,并且它们具有令人望而却步的运行时间和较差的经验性能。该项目旨在开发可扩展的算法方法,改善子模块优化的经验性能,并将理论见解转移到应用程序中。拟议的研究汇集了计算机科学,数学和优化的见解,并加强了这些领域之间的联系。该项目将培训下一批学生,并为他们提供在所有这些领域工作的技术工具。该项目集中在次模函数优化的三个相互关联的研究方向:(a)设计更快的算法,以最小化具有可分解或求和结构的次模函数。该方法是建立在一套丰富的工具,从离散和连续优化。(b)具有改进的近似保证和更快的运行时间的约束子模最大化问题的设计算法。重点是解决约束次模最大化问题的非单调目标的逼近性和设计更快的算法的中央家庭的约束。(c)设计子模块成本分配或标记问题的算法和框架。主要目标是获得更有表现力的算法框架和高效的算法。
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Generalization Error of Stochastic Mirror Descent for Quadratically-Bounded Losses: an Improved Analysis
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ta Duy Nguyen;Alina Ene;Huy Nguyen
- 通讯作者:Ta Duy Nguyen;Alina Ene;Huy Nguyen
Adaptive Gradient Methods for Constrained Convex Optimization and Variational Inequalities
约束凸优化和变分不等式的自适应梯度法
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Ene, Alina;Nguyen, Huy L;Vladu, Adrian
- 通讯作者:Vladu, Adrian
High Probability Convergence of Stochastic Gradient Methods
- DOI:10.48550/arxiv.2302.14843
- 发表时间:2023-02
- 期刊:
- 影响因子:0
- 作者:Zijian Liu;Ta Duy Nguyen;Thien Hai Nguyen;Alina Ene;Huy L. Nguyen
- 通讯作者:Zijian Liu;Ta Duy Nguyen;Thien Hai Nguyen;Alina Ene;Huy L. Nguyen
Improved Convergence in High Probability of Clipped Gradient Methods with Heavy Tailed Noise
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ta Duy Nguyen;Thien Nguyen;Alina Ene;Huy Nguyen
- 通讯作者:Ta Duy Nguyen;Thien Nguyen;Alina Ene;Huy Nguyen
Adaptive and Universal Algorithms for Variational Inequalities with Optimal Convergence
- DOI:10.1609/aaai.v36i6.20609
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Alina Ene;Huy L. Nguyen
- 通讯作者:Alina Ene;Huy L. Nguyen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alina Ene其他文献
High Probability Convergence for Accelerated Stochastic Mirror Descent
加速随机镜像下降的高概率收敛
- DOI:
10.48550/arxiv.2210.00679 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Alina Ene;Huy L. Nguyen - 通讯作者:
Huy L. Nguyen
On Routing Disjoint Paths in Bounded Treewidth Graphs
关于有界树宽图中路由不相交路径
- DOI:
10.4230/lipics.swat.2016.15 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Alina Ene;Matthias Mnich;Marcin Pilipczuk;Andrej Risteski - 通讯作者:
Andrej Risteski
D S ] 1 1 A ug 2 01 6 A New Framework for Distributed Submodular Maximization
D S ] 1 1 Aug 2 01 6 分布式子模最大化的新框架
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
R. Barbosa;Alina Ene;Huy L. Nguyen;Justin Ward - 通讯作者:
Justin Ward
Online Buy-at-Bulk Network Design
在线批量购买网络设计
- DOI:
10.1109/focs.2015.40 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Alina Ene;Deeparnab Chakrabarty;Ravishankar Krishnaswamy;Debmalya Panigrahi - 通讯作者:
Debmalya Panigrahi
A Parallel Double Greedy Algorithm for Submodular Maximization
子模最大化的并行双贪婪算法
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Alina Ene;Huy L. Nguyen;Adrian Vladu - 通讯作者:
Adrian Vladu
Alina Ene的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alina Ene', 18)}}的其他基金
III: Small: A primal-dual framework for data-mining applications
III:小型:数据挖掘应用程序的原始对偶框架
- 批准号:
1908510 - 财政年份:2019
- 资助金额:
$ 50.74万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: New Algorithms and Models for Turbulence in Incompressible Fluids
职业:不可压缩流体湍流的新算法和模型
- 批准号:
2143331 - 财政年份:2022
- 资助金额:
$ 50.74万 - 项目类别:
Continuing Grant
CAREER: Advancing Fair Data Mining via New Robust and Explainable Algorithms and Human-Centered Approaches
职业:通过新的稳健且可解释的算法和以人为本的方法推进公平数据挖掘
- 批准号:
2146091 - 财政年份:2022
- 资助金额:
$ 50.74万 - 项目类别:
Standard Grant
CAREER: New Classical and Quantum Algorithms for Quantum Dynamics of Molecular Collisions and Chemical Reactions at Ultralow Temperatures
职业:超低温下分子碰撞和化学反应的量子动力学的新经典和量子算法
- 批准号:
2045681 - 财政年份:2021
- 资助金额:
$ 50.74万 - 项目类别:
Continuing Grant
CAREER: Sublinear Graph Algorithms: New Insights for Foundational Problems
职业:次线性图算法:基本问题的新见解
- 批准号:
1942010 - 财政年份:2020
- 资助金额:
$ 50.74万 - 项目类别:
Continuing Grant
CAREER: Shape Analysis in Submanifold Spaces: New Directions for Theory and Algorithms
职业:子流形空间中的形状分析:理论和算法的新方向
- 批准号:
1945224 - 财政年份:2020
- 资助金额:
$ 50.74万 - 项目类别:
Continuing Grant
CAREER: New Algorithms to Simulate Ultracold Matter Out of Equilibrium and Redefine the Low-Temperature Frontier
职业:模拟失衡超冷物质并重新定义低温前沿的新算法
- 批准号:
1848304 - 财政年份:2019
- 资助金额:
$ 50.74万 - 项目类别:
Continuing Grant
CAREER: Graph-Based Security Analytics: New Algorithms, Robustness under Adversarial Settings, and Robustness Enhancements
职业:基于图的安全分析:新算法、对抗设置下的鲁棒性以及鲁棒性增强
- 批准号:
1937787 - 财政年份:2019
- 资助金额:
$ 50.74万 - 项目类别:
Continuing Grant
CAREER: New Directions in Graph Algorithms
职业:图算法的新方向
- 批准号:
1750140 - 财政年份:2018
- 资助金额:
$ 50.74万 - 项目类别:
Continuing Grant
CAREER: New Mathematical Programming Techniques in Approximation and Online Algorithms
职业:近似和在线算法中的新数学编程技术
- 批准号:
1750127 - 财政年份:2018
- 资助金额:
$ 50.74万 - 项目类别:
Continuing Grant
CAREER: New Learning-based Algorithms for the Analysis of Very-Large-Scale Neuroimaging Data
职业:用于分析超大规模神经影像数据的基于学习的新算法
- 批准号:
1748377 - 财政年份:2018
- 资助金额:
$ 50.74万 - 项目类别:
Standard Grant